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Abstract 
 

Classification is a data mining technique widely used in critical domains like financial risk 

analysis, biology, communication network management, etc. Classification accuracy and 

learning from distributed datasets are the most challenging topics in the field of supervised 

learning. In this paper, we first briefly review the background of parallel and distributed 

classification algorithms and then propose a novel approach for classification in distributed 

large datasets. This approach is based on code migration instead of data migration. 

Extensive experimental results using a popular benchmark test suite show the effectiveness of 

this approach in term of accuracy. These results show also that the proposed method 

improved slightly classification accuracy over standard methods. 
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1. Introduction 
 

Classification is a data mining technique widely used in diverse domains to extract hidden 

knowledge in distributed large datasets [1]. Actual classification algorithms are based on a set 

of theories, models, techniques and tools among which we can mention statistics, induction, 

artificial neural networks [2], or genetic algorithms [3]. Despite this diversity and plurality of 

methods and tools, existing algorithms suffer both from classification accuracy and 

computation time [4]. 

To improve the performances of classification algorithms it is possible to employ 

parallelisation techniques [4, 5] or ensemble methods [6]. The exploitation of parallelism in 

classification algorithms follows two main strategies [7]: data parallelism and task 

parallelism. In data parallelism, the dataset is divided across all processors and each processor 

performs the same task locally on its own partition. In task parallelism, different tasks are 

executed in parallel on different partitions but processors need to have access to all partitions. 

In this case, the dataset is explicitly replicated (distributed memory) or shared among multiple 

processors (shared memory). The parallel hybrid is the combination of two above strategies 

[7]. 

In task parallelism, however, if the size of this dataset is very large or if it is widely 

distributed, its duplication may cause a communication overhead that can degrade the 

performance of a classification system. It is therefore preferable to use the data parallelism. 

Thus, the combination of techniques of parallelization and distribution can help to improve 
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significantly the performance of classifiers. In this paper, we propose a novel classification 

method based on data distribution. 

Ensemble methods are learning algorithms that construct a set of classifiers (called base 

classifiers) and then classify new data points by taking a (weighted or unweighted) vote of 

their predictions [6]. Typically, an ensemble learning method runs the learning algorithm 

several times, each time with a different subset of the training examples.  

Boosting [8] is the most popular implementation of such methods. It manipulates the 

training examples to generate multiple hypotheses. Boosting is a family of methods for 

accelerating a learning algorithm: AdaBoost (two-class problem), AdaBoost.M1 and 

AdaBoost.M2 (multiple-class problems) and AdaBoostR (regression) are among the most 

known [8]. Boosting maintains a set of weights over the training examples. For each iteration, 

the learning algorithm is invoked to minimize the error on the training set. Weights of 

misclassified examples are increased and weights of correctly classified examples are 

decreased. The global classifier is constructed through a weighted vote of the individual 

classifiers. 

The ensemble learning approach [4], in which the same program runs several times on 

different dataset, can be applied to a distributed environment, where dataset is stored on 

different sites, thus producing different local models to be aggregated into a global model. 

Based on this idea, several methods have been proposed such as meta-learning. 

Parallelizing a classification algorithm implies considering the method characteristics that 

permit to find the best parallelism [9]. Most of parallel classification algorithms in literature 

are based on data parallelism [4, 5]. In this type of algorithms, the same classifier is applied to 

each partition of the dataset to generate a local model. Subsequently, all these local models 

will be aggregated by a combining strategy to produce a global model [4]. 

The rest of this paper is organized as follows. Section 2 makes a review on techniques of 

parallel classification. Our method is described in Section 3 and its theoretical evaluation is 

presented in Section 4. Section 5 presents and discusses some experimental results for 

validating the proposed method. Finally, Section 6 concludes the paper and lists some 

prospects for future works. 

 

2. Parallel and Distributed Classification Algorithms 
 

Classification aims at assigning data items to one of n predefined categorical classes [1]. 

Since the category being predicted is pre-labelled, classification is also known as supervised 

induction [1]. The classification task requires two phases: learning and classification. The first 

phase generates a classification model from a specific set of training data with a predefined 

class for each datum. Then, the accuracy of the generated model is evaluated on the test data 

to measure the learning quality. The classification (or prediction) phase is the use of the 

model, found in the first phase, to classify new data. 

In the following we present a brief review of parallel classification algorithms and 

methods. First, we introduce parallel algorithms based on decision trees and artificial neural 

networks, then we describe ensemble based methods such as Boosting [10] and meta-learning 

[11]. 
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2.1. Parallel Decision Trees 
 

The initial approaches to parallelizing decision trees were not scalable on large datasets 

and massively parallel machines [4, 5]. These limitations were resolved by the SPRINT 

algorithm [12]. SPRINT reduces the multiple sorting passes on the dataset to only one pass 

and it partitions horizontally the data among all processors. The decision tree is replicated on 

all processors. Each processor computes locally the best split point then exchanges its 

frequency statistics to determine the global best split point. SPRINT scalability is limited 

because the hash table used to split the attributes generates a communication overhead of 

O(N) messages per processor, where N is the number of examples. The ScalParc algorithm 

[13] is an extension of SPRINT that uses a distributed hash table to reduce the 

communication overhead to O(log(N)). Srivastava [14] proposed a dynamic hybrid approach 

that migrates gradually from data parallelism to task parallelism in order to reduce the load 

imbalance and the communication overhead incurred by the decision tree when it becomes 

bushy. This approach distributes the dataset among P processors. All processors are assigned 

to a single group. Each processor computes synchronously with the other processors the same 

decision tree node. The local information is exchanged by global reduction. This exchange 

overhead grows with the number of leaf nodes. When the communication becomes costly, the 

hybrid algorithm splits these nodes equally among two processor groups. On each group of 

processors, the tree nodes are synchronously computed then split among two processor 

groups. 
 

2.2. Parallel Artificial Neural Networks 
 

There are three main approaches in parallel neural networks formulation [7]. The first 

approach partitions the network. Nodes and weights are partitioned among processors and the 

computation is parallelized [15]. The neural network can also be represented by a weight 

matrix that can be parallelized.  

In the second approach, namely pattern partition, nodes and weights are replicated on each 

processor and the patterns are partitioned among the processors. In this case, weights are 

communicated to update the network [16]. This approach is preferred when the number of 

patterns is large. It is considered as a coarse-grained parallelism but the first ANN approach is 

considered as fine-grained parallelism. The two approaches can be combined on a hybrid one 

[4].  

Neural networks performances are sensitive to initial conditions and network topology. 

Thus, neural networks learning can be seen as an optimization problem that can be resolved 

by Genetic algorithms to find an optimal topology or to find an initial set of good weights 

[17]. 

 

2.3.  Parallel Boosting 
 

The first distributed version of the boosting method was proposed in [10], where each 

classifier is trained using a fraction of the training set. This version had worse performance 

compared to sequential algorithm [10]. Another distributed version of the boosting algorithm 

is proposed in [9]. At each boosting round, the classifiers are first learned on disjoint datasets. 

The produced models are exchanged among the sites to build an ensemble. Afterwards, the 
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exchanged models are combined and their weighted voting-ensemble is constructed on each 

disjoint dataset.  

P-AdaBoost [18] is a parallelization of the AdaBoost algorithm based on early estimates of 

the asymptotic frequency distribution of weights. In the first phase, the AdaBoost algorithm is 

run in sequential to estimate the asymptotic frequency distribution for the weights. In the 

second phase, instance models are trained in parallel along with their respective coefficients 

in the aggregated predictor. The global model is constructed through a linear combination of 

the trained instance models. 
 

 

Figure 1. Meta-learning from Two Data Sources 
 

2.4. Meta-learning 
 

The meta-learning method was proposed for homogeneous distributed datasets [4]. First, a 

base classifier is trained from the local training-set at each site. The produced classifiers are 

collected to a master site where their predictions are generated on a separate validation-set to 

produce meta-level data. Finally, the global classifier (meta-classifier) is trained from the 

meta-level data. The meta-classifier algorithm can be an arbiter or a combiner of the different 

predictions composing the meta-level data. Figure 1 illustrates the various stages of meta-

learning applied to a dataset distributed over two sites. 
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An example of meta-learning based system is JAM (Java Agents for Meta-Learning) [11]. 

By combining different learning systems, meta-learning improves the predictive performance 

and exploit task parallelism. It also reduces the communication cost when it exchanges the 

learned models instead of training examples. Meta-learning is scalable w.r.t the data size 

when it learns from small subsets that fit in memory. For the scalability w.r.t the number of 

sites, meta-learning has been enriched with a hierarchical approach, yielding however 

admittedly poor results: reduced predictive performance and increased communication 

overhead with large number of subsets [4]. 
 

3. Our Proposed Method 
 

In this section, we propose a classification method inspired by the parallel genetic 

algorithm called Island Model [3]. This model creates, randomly, a set of starting solutions 

and divides it into islands. Each solution is considered as an individual who migrates from 

one island to another. The purpose of migration is the improvement of individuals (solutions) 

by undergoing mutations and crosses. 

By analogy with the island model, and in the case of a geographically distributed dataset, 

each partition of the dataset will be regarded as an island. An individual (solution) will be a 

classification model. Initially, a classification model (neural network, decision tree, Bayesian 

network, etc.) is created on each partition. By migrating from one site to another, the model 

must adapt to the data of the hosting island. The models are constructed using artificial neural 

networks with backpropagation learning algorithm [19]. In what follows we describe the 

problem to be addressed and then we detail our proposed method. 
 

3.1. Position of the Problem 
 

Advances in networking technology and computational infrastructure induced (automatic) 

generation of large volumes of distributed data, which contain hidden source of knowledge, 

very rich and very useful for policy makers. The discovery of this knowledge requires the 

implementation of data mining techniques. In the case of a distributed data mining system, the 

first phase of the discovery process is to define the data distribution model. Data distribution 

considers two main models: horizontal partitioning (tuples) and vertical partitioning 

(attributes). In the first model, various distributed data sites store the same set of attributes 

while in the second model sites contain different sets of attributes across distributed datasets. 

In this paper, we investigate the case of horizontally distributed datasets like most of existing 

algorithms. 

Typically a distributed data mining algorithm applies the same algorithm on the different 

sites to produce a local model that will be aggregated to build a global model. This method is 

appropriate for distributed architectures but can lead considerable accuracy lost [11]. Thus 

applying a single algorithm to whole data should produce more accurate classification 

models. This can be done by transferring data to a single site or migrating the code through 

the various data sites. Because a produced model is more compact than the data on which it 

was applied, we choose to use code migration instead of data migration. 
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3.2. Methodology 
 

Consider a distributed dataset D partitioned on n sites S1 S2 ... Sn, geographically distributed. 

The partitions of the dataset at these sites are respectively P1, P2, ..., Pn. Instead of exchanging 

the different partitions between computing sites, we propose to build a local classification 

model that travels all the sites to produce a global model. 
  

 

Figure 2. Different Phases of Distributed Learning Algorithm 
 

Figure 2 shows the various phases of the distributed learning algorithm that we propose. It 

is indeed a repetition of two essential phases: learning and migration. The learning phase is 

the application of a classification algorithm to the local partition of each site to produce a 

local model per site. The migration phase consists on the migration of each local 

classification model to the successor site based on a virtual ring topology. At each new 

learning phase, each site performs the same classification algorithm to train the migrant 

model on local partition. 

Generally, a classifier is built from an empty initial model (decision tree) or a randomly 

generated model (neural network). This means that the learning phase is done without prior 

knowledge. Contrariwise, in our approach, each model is built from a previously constructed 

model (coming from another site). We call this form of incremental learning, relearning. 

Neural networks are ideally suited to this type of treatment through the iterative aspect of 

the learning algorithms they use. Unfortunately, the neural networks are known for their 

sensitivity to initial conditions. Network architecture, number of layers and numbers of 

internal nodes, can affect the performance of the produced model. They are also sensitive to 

the order of instances processing. To overcome these problems, we propose to use an 

approach based on data distribution. Thus, in each site the same algorithm is applied to the 

local partition. The models constructed in parallel will migrate from one site to another to 

produce N global models. Each model is characterized by its architecture and an order of 

partitions traversal. The choice the best model will be based on the quality of its 

performances. 
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3.3. Distributed Learning Algorithm 
 

Our algorithm takes as input a dataset geographically distributed over n nodes, each 

containing a partition Pi and a test dataset TD built from these partitions. Initially, a neural 

network with random weights (initial model) is created on each node. Each model performs 

the back-propagation algorithm [20] on the local partition. Then the model is evaluated on the 

test data. According to the migration scheme, each model is sent to the next node where it 

resumes learning on the hosted partition. The process is repeated for each model by moving it 

from one node to another until it reaches the start node (Algorithm 1). 
 

 

The Distributed learning algorithm is executed in parallel by each participating site 

according a predefined virtual ring of communication. It should be noted here that we can 

build N! possible communication rings. But in our algorithm the same communication ring is 

used by all sites.  

Figure 3 highlights the various steps executing the proposed algorithm on a dataset 

distributed across four partitions: 

1. Step 1: a model (M1) is generated by learning from the first partition (P1). After 

testing (M1) on test data, the model (M1) is moved to the next partition (P2).  

2. Step 2: the learning algorithm re-adapts the model (M1) to new data while keeping the 

knowledge previously learned to produce a new model named (M2). This is what we 

called relearning. Accuracy of (M2) is measured then it is moved to the next site (P3) 

of the virtual ring of communication. 

3. Step 3: model (M3) is built from the previous knowledge of model (M2) and the data 

of partition (P3). Accuracy of (M3) is measured then it is moved to the next site (P4). 

4. Step 4: model (M4) is built from the previous knowledge of model (M3) and the local 

partition (P4). Accuracy of (M3) is measured then it is moved to the next site (P4). 

Finally, we obtain a global model built by learning from the whole dataset.  
 

Algorithm 1  Distributed learning algorithm 

For site i out of n 

Input: 

Pi, TD 

Output: 

Classification model M 

Main: 

1. Create a random classification model M  

2. For k out of n 

a. Train M on Pi 

b. Test M on TD 

c. Send M to Successor(Pi) 

d. Receive M’ from  Predecessor(Pi) 

e. M = M’ 

3. Broadcast accuracy of the model local M 

4. Choose the best model 
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Figure 3. Learning from Distributed Dataset (Four Partitions) 
  

In this algorithm, to build a classification model we have to choose a classification 

technique suitable for incremental learning like artificial neural networks. Thus to run and 

evaluate the performance of our algorithm we use a learning algorithm based on neural 

networks. Initially, the algorithm builds a neural network with a predefined architecture and 

random weights. Learning occurs by adjusting the weights based on instances of the partition 

(P1). The second step is to apply the learning algorithm to the next partition (P2). In this step, 

the initial network is the model generated by the first step instead of a random network. 

Thereafter this treatment is repeated for the remaining partitions. Thus, the neural network 

runs through all partitions by accumulating new knowledge. 

 

3.4. Reduction of Communication Cost 
 

Consider a dataset distributed among N sites, each partition consisting of I instances, C 

classes and A attributes. Thus, the size of each partition is (I*A) and its transfer over network 

will produce the exchange of (I*A) messages. However, the size of a neural network learned 

on a partition is on order of O(A+C). Since the number of classes is often negligible 

compared to the number of attributes, the size of a neural network is estimated to O(A). 

According proposed algorithm, each model traverses N sites, so it produces (A*N) messages. 

The communication gain is the ratio of (I*A) on (A*N) which equals (I/N). Since the datasets 

sizes are on the order of thousands of instances when the number of attributes does not exceed 

tens, our approach brings us to reduce very substantially the communication cost. 
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4. Experimental Evaluation 
 

In this section, we discuss some experimentation results to compare the performance of our 

approach versus a centralized approach. These experiments were performed on various 

datasets of the UCI site (http://kdd.ics.uci.edu/), which are Waveform, Colic, Letter, German, 

Breast cancer, Heart, Diabetes, Thyroid and Titanic datasets. Main characteristics of these 

datasets are summarized in Table 1. The learning algorithm used is back propagation 

algorithm of the gradient of the platform Weka 3.5.3 [21] that we extended to implement our 

approach.  
  

Table 1. Datasets Employed in the Experiments. 

To test our approach, each training set will be divided into four sites. Performance metric 

to consider is the accuracy (classification error of unseen data).  

We used neural networks with a single hidden layer. The number of neural network nodes 

is equal to the sum of the number of attributes and classes. The training epochs is set to 400 

for the centralized approach and 100 for each phase of the distributed learning approach. Now 

we have to fix the topology of the communication ring. 

The learning datasets are partitioned into four partitions A, B, C and D. In order to estimate 

the influence of the partitions traversal order we considered six possible communication 

rings:  (ABCD), (BCDA), (CDAB), (DABC), (ADBC) and (ACDB). For simplicity these six 

virtual rings are noted respectively VR1, VR2, ... and VR6. 

Figure 4 compares the values of the squared error and classification error obtained by our 

approach with those of the centralized one, compared on the Waveform dataset according to 

the six schemes defined above. We note that the performance of our approach depends on the 

migration scheme, but remain better than the centralized one. 

In Figure 5, we see that our approach performs well than the centralized approach on the 

Colic dataset. This improved performance is due to the rehabilitation of the classifier during 

partitions traversal, which produces a more general learning and avoids overfitting. Figures 4 

and 5 illustrate the sensitivity of classification accuracy between the different migration 

schemes. Indeed, whenever a model is applied to a new partition the knowledge is adapted to 

the information it contains. This adaptation can improve or degrade the quality of the 

classifier depending on the topology of the communication ring but not on data analyzed on 

the first or last phase. 
 

Dataset # Instances 

# Instances 

Training/Test 

# Attributes 

German 1000 700/300 20 

Breast c. 277 200/77 9 

Heart 270 170/100 13 

Diabetes 768 468/300 8 

Thyroid 215 140/75 5 

Titanic 2201 150/2051 3 
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Figure 4. Influence of Order of Partitions Traversal on the Classification 

Accuracy of Distributed Learning Algorithm for the Waveform Dataset 
  

 

Figure 5. Influence of Order of Partitions Traversal on the Classification 

Accuracy of Distributed Learning Algorithm for the Colic Dataset 
   

Table 2 compares misclassification errors on the test set and relative standard deviations 

are reported for AdaBoost and Bagging methods (A and B, respectively) built by aggregating 

a 1000 model instances, for P-AdaBoost algorithm (P) built by aggregating 1000 models; the 

length of the P-AdaBoost sequential stage is S = 100 (as reported in [18]) and for the 

Distributed learning algorithm (D) by partitioning training dataset on four equal partitions. As 

Table 2 shows, our algorithm achieves classification accuracy comparable or slightly better 

than that of other methods. Compared to the parallel method P-AdaBoost (P), the Distributed 

learning algorithm (D) achieves better accuracy except for Heart and Thyroid datasets. 
 

Table 2. Accuracy on Benchmark Datasets 

Method Diabetes Breast c. German Heart Titanic Thyroid 

A 26.4 ± 1.4 24.5 ± 4.8 23.2 ± 1.8 22.2 ± 3.1 23.5 ± 1.6 4.7 ± 1.8 

B 23.3 ± 1.8 25.1 ± 4.4 24.3 ± 2.3 24.0 ± 2.3 27.0 ± 3.7 6.5 ± 2.3 

P 26.0 ± 1.7 24.7 ± 3.4 23.5 ± 2.3 22.2 ± 4.3 23.1 ± 1.3 4.9 ± 1.8 

D 24.3 ± 1.3 23.4± 4.7 23.3 ± 1.6 23.0 ± 3.8 22.1 ± 4.3 5.3 ± 1.3 
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Table 3 compares performances of the Distributed learning algorithm to the meta-learning 

method (based on the C4.5 algorithm [22]) provided by the platform WekaMetal [23] for the 

dataset Letter. The values in the table represent the percentage of misclassified examples in 

the test phase by varying the number of partitions. These values show that the performance of 

our approach degrades when the number of partitions increases. Except that these 

degradations are less important than the meta-learning method. 
 

Table 3. Accuracy on Letter Dataset Varying the Number of Partitions 

 

5. Conclusion 
 

In this paper, we proposed a distributed approach to supervised learning in which we use 

code migration instead of data migration. This approach, applied to distributed datasets, has 

allowed distributed learning avoiding communication overhead. The effectiveness of our 

approach was compared against a centralized approach, where learning is performed from a 

dataset stored on a single site. The first experiments we conducted have shown fairly 

significant gain in performance obtained by our proposal. These encouraging results suggest 

new directions for improving our approach. Thus, we believe it would be interesting to use 

genetic algorithms to find an optimal setting of initial parameters. This setting is to find a 

number of internal layers and the number of nodes in layers that improve the performance of 

the neural network. 
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