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Abstract 
 

In this paper we propose a model of bone remodeling which takes in consideration the 

elasticity with damage properties of the material. Also the non linear equation of the bone 

apparent density is solved by a finite difference method, particularly a model with n unit 

elements. We will study the influence of damage damping on the adaptation of the structure 

under the effect of a controlled mechanical loading. 
 

Keywords: finite difference method, bone remodeling, apparent density, damage, 

osteocytes 
 

1. Introduction 
 

The bone is continually renewed by local apposition and resorption of bone matrix in 

order to adapt to its environment [10]. This is due to the different cells involved in bone 

remodelling : osteocytes, osteoclasts and osteoblasts [6, 15, 5]. 
 

 

Figure 1: Schematic Proposed by Cowin and Mullender  
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In response to external mechanical loading, the osteocytes network is sensitive to the 

state of local deformation of bone tissue and is able to alert other specialized cells in the 

remodeling. 

These cells can easily change the density of the bone and has the ability to cause a 

variation in mechanical properties (Figure 1) [6,11, 12, 17]. 

Also, the behavior of bone is a combination of several mechanisms, accompanied by 

micro and / or    macro cracks. Those effects are modeled by the damage with strain [4]. 

The scientific community: mathematicians, engineers, biomechanicians among others are 

interested in modeling of such processes [9, 16, 20, 21, 23, 24, 26, 27]. In this work, we retain 

the model proposed by Mullender [18, 22].  The evolution equation of the model is solved by 

finite difference. The related results show the influence of the damage and 

distribution of osteocytes. 
 

2. Model Geometry with n unit Elements 
 

According to Zidi [28], we consider a solid discretized into n elements uniformly loaded 

by a compressive stress (one-dimensional case) [7]. The study of the bone 

fragment is made, so that one is located in the one-dimensional case, we will discretize into n 

unit elements for which we will apply a compressive force evenly distributed over the 

various units as depicted in figure 2 [3]. 

 

 

Figure 2 : Model Geometry with n unit Elements 

 

3. Evolution Law of Bone Density 
 

The evolution law of the apparent bone density is an extension of the one proposed by 

Mullender [18, 2] and is given by: 
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 with ρmin ≤ ρ ≤ ρmax and 1 ≤ i ≤n. Where ρmin is the density of completely resorbed bone, 

ρmax is the maximum density defined for a compact bone and τ is a positive constant 

related to the reaction time of bone tissue.  

 m (m ≤ n) is the total number of osteocytes in the solid.  
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 Ik (1 ≤ m ≤ k) corresponds to the series of numbers of the elements containing an 

osteocyte.  

 Sk represents the density of deformation energy in Ik and S0 is the constant determined 

from the energy density of deformation, S0 that doesn’t generate no remodeling.  

 Moreover, β is a parameter reflecting the intensity of the stimulus cell.  

 D is a normalization factor limiting the area of influence of osteocyte.  

 d(i,Ik) is the distance between the centers of geometric element i and the element Ik.  

 

4. The Young's Modulus 
 

To simplify the study, we assume that the bone is an isotropic material and inhomogeneous 

[14, 25]. 

 Bone structure without damage has a Young's modulus given by:  

cE      [8, 19] 

We note that Young's modulus E is related to apparent bone density, with 
c =100 and  = 3 are two constants characteristic of the bone. 

 With damage, the Young's modulus becomes:   

EdE )1(
~
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Where d defines the degree of damage and 10  d and then we have:     
cdE )1(
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Hypothesis proposed by Abdali : [13]  

~
~

cE    

 ~   is the bone density that takes into account the damage:   
1

)1(~ d  

 

5. Resolution 
 

To discretize the previous equation, we use the method of finite difference with an implicit 

scheme and the fixed point method by Abdali. [1, 13] 

We obtain: 

data initial

,....2,1)(.

00

0

0 01,

),(1



















 




mk

k n

k

kD

Iid
i

n
i

n

niS
S

e
t

k

 

Some stages of the resolution: 

To understand the significance of certain parameters of the law of evolution, we 

have: 
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n : is the number of cells (= 50) 

m: corresponds to the number of the cells containing an osteocyte (●)  

The hypotheses (H): 

H1-  n=m : all the cells contain an osteocyte. 

H2-  n ≠ m : with cases to check: 

 Package of osteocytes in the central part. 

 Two packs of osteocytes at the ends. 

 Two or three packs of osteocytes alternated with empty boxes.  
 

H3-  we have the same deformation in each box: 
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kS is the density of deformation energy, so : 
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The calculation of kS
we have : 
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6. Discussion of Results  
 

We simulated the case of an uniform distribution of the osteocytes cells with (n=m=50), 

and of another heterogeneous case (n  m). The values of the other parameters used during 

the digital simulations are given in the table 1. 

 

Table 1 : The values of the parameters used during the digital simulations. 

Data              Symbol            Values    Units 

Maximum density:      max   1,75   g/Cm
3
 

Minimal density:      min   0,01   g/Cm
3
 

Initial density:                  0   0,6   g/Cm
3
 

The step of time:      t   5.10
-3

   UT 

The total force:                   F   10   N 

The distance between 2 centers: D   25   mm 

The signal of reference:      S0   0,04   MPA  

Constants:        = 3  = 0,5   n = 50 

The degree of damage:   The damage doesn’t follow a law of evolution, is given a 
randomly          d = 0 - 0.2 - 0.5 - 0.8 

 

 

We studied in the range of elasticity of bone tissue by varying the number and 

position of osteocytes in the elements unity. Also Young's modulus will reflect the state 

of damage of bone tissue. 
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6.1. Case 1: n  m, d = 0 (without damage) 

(m=30: alternate packages 3 x 10 ostéocytes) 

The evolution of the bone density compared to the position of the osteoytes is 

illustrated as shown in the figure 3. 

 

 

Figure 3: The Evolution of the Density in Case 1: n  m, d = 0  
 

The model converges at a density peak in three areas that correspond to packets of 

osteocytes, and retains the initial density in two areas empty of the osteocytes.  

According to this study, we have made the following findings: 

In the areas filled by osteocytes, the calculation converged at the end of 44 units 

of time (UT) with a density peak of 1.74 g/cm3. 

 The component elements of this zone reached the maximum density and thus 

support the imposed loading. 

 Whereas in the private areas of osteocytes, the calculation converged at the 

initial density of 0.6 g/cm3. 

We observe that the results of the simulation reflects the localization of 

osteocytes in bone like the results of Zidi [28];  and the bone adapts  to  its  

mechanical  environment (figure 1). 

Compared to the approch of Zidi [28], our model converges only after 44 units 

of time (UT) instead of 125 units of time (UT). 

 

6.2. Case 2: n  m, d  0 (with damage) 

(m=30: alternate packages 3 x 10 ostéocytes) 

The evolution of the bone density with damage compared to the position of the 

osteoytes is illustrated as shown in the figure 4. 
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Figure 4: The Evolution of the Density in Case 2: n  m, d  0 
 

In this case, we introduce the notion of the degree of damage d in the equation of 

evolution of  bone density; and we keep the same approach of the simulation. 

Figure 4 presents the same look as the previous case (Figure 3) : we have three areas 

that correspond to packets of osteocytes with a density peak and two areas that retain 

the initial density. 

When d=0 without damage, we have the same results.  

When d increases (for exemple d=0,5) bone density decreases :  

- In the areas filled by osteocytes, the value of bone density is equal to 1.4 g/cm3. 

- In the private areas of osteocytes, the value of bone density is equal to 0.5 g/cm3. 

The findings are: 

The value of the bone density with damage depends on the position of the 

osteoytes as the previous case (case 1). 

The values of the damage variable influence on the bone density: When d 

increases bone density decreases, as mentioned in the results of Hazelwood and 

Alexander. [29, 30]  

 

6.3. Case 3: n  m, d = 0 (without damage) 

(m=30: alternate packages 3 x 10 ostéocytes) 

The evolution of the Young’s modulus without damage compared to the position of 

the osteoytes is illustrated as shown in the figure 5. 
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Figure 5: The Evolution of the Young’s Modulus in Case 3: n  m, d  0  
 

The model converges at an Young’s modulus peak in three areas that correspond to 

packets of osteocytes, and retains the initial Young’s modulus in two areas empty of the 

osteocytes. A high Young's modulus means that the material is stiffer.  

The findings are: 

In the areas filled by osteocytes, the calculation converged at the end of 44 units 

of time (UT) with an Young’s modulus peak. 

 Whereas in the private areas of osteocytes, the calculation converged at the 

initial Young’s modulus where the bone is less stiff and less strong. 

In this case, the results of the simulation reflects the localization of osteocytes 

in bone and that the bone adapts to its mechanical environment (figure 1). 

 

6.4. Case 4: n  m, d  0 (with damage) 

(m=30: alternate packages 3 x 10 ostéocytes) 

The evolution of the Young’s modulus with damage compared to the position of the 

osteoytes is illustrated as shown in the  figure 6. 

 

 

Figure 6: The Evolution of the Young’s Modulus in Case 4: n  m, d  0  
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We introduce the notion of the degree of damage in the equation of evolution of the 

Young’s modulus; and we keep the same approach of the simulation. 

Figure 6 presents the same look as the previous case (Figure 5). 

The findings are: 

 The value of the Young’s modulus with damage depends on the position of the 

osteoytes as the previous case (case 3). 

When the damage increases, the Young’s modulus decreases, as mentioned in 

the results of Martínez-Reina and Palchik [31, 32] 

 

7. Conclusion 
 

The evolution equation of the model is solved by finite differences and the results 

presented  show : 

 The influence of the distribution of osteocytes in the remodeling process: The 

private areas of osteocytes are insensitive to mechanical load and that only 

the parts containing osteocytes that meets this burden. 

 The damage influence on the bone density and the stiffness of bone. 
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