
International Journal of Advanced Science and Technology

Vol. 37, December, 2011

129

HF-hash: Hash Functions Using Restricted HFE Challenge-1

Dhananjoy Dey
1,2

, Prasanna Raghaw Mishra
1
 and Indranath Sengupta

2,*

1
SAG, Metcalfe House, Delhi-110 054, India

2
Department of Mathematics, Jadavpur University, Kolkata, WB 700 032, India

{ddey06, prasanna.r.mishra, sengupta.indranath} @gmail.com

Abstract

Vulnerability of dedicated hash functions to various attacks has made the task of designing

hash function much more challenging. This provides us a strong motivation to design a new

cryptographic hash function viz. HF-hash. This is a hash function, whose compression

function is designed by using first 32 polynomials of HFE Challenge-1 [8] with 64 variables

by forcing remaining 16 variables as zero. HF-hash gives 256 bits message digest and is as

efficient as SHA-256. It is secure against the differential attack proposed by Chabaud and

Joux in [6] as well as by Wang et. al. in [25] applied to SHA-0 and SHA-1. We have also

compared the efficiency of our HF-hash with SHA-256.

Keywords: Collision search attack, dedicated hash functions, differential attack, HFE

challenge

1. Introduction

The majority of dedicated hash functions published are more or less designed using ideas

inspired by hash functions MD4 [20] and MD5 [21]. Not only the hash functions HAVAL

[28], RIPEMD [3], RIPEMD-160 [18] but also SHA-0 [15], SHA-1 [16] and SHA-2 family

[17] are designed using the similar ideas. The hash functions HAS-160 [23] and HAS-V [19]

both exhibit strong resemblance with SHA-1.

While comparing compression functions of the aforementioned hash functions it is easy to

observe that all of them have the three fundamental parts viz. the message expansion

algorithm which is required for creating more disturbance pattern for the input to the

compression function, the iteration of the step transformation which is required for taking

arbitrary length of input and the state feed-forward operation which is required for updating

the chaining variables or the internal hash value.

The most commonly used dedicated hash functions are MD5 and SHA-1. The first member

of the MD family, viz. MD4 was published in 1990. After one year, an attack on the last two

out of three rounds has been presented in [1]. After that Rivest designed the improved version

of MD4, called MD5. Later, Vaudenay showed that the first two rounds of MD4 are not

collision-resistant and it is possible to get near-collisions for the full MD4 [24].

In 1993, Boer and Bosselaers [2] showed that it is possible to find pseudo-collisions for the

compression function of MD5, i.e. they showed a way of finding two different values of the

initial value IV for the same message M such that

).,(5),(5 ' MIVcompressMDMIVcompressMD 

* This work was done while the author was visiting the Ramakrishna Mission Vivekananda University, Belur Math,

Howrah, WB 711 202, INDIA on Lien from the Jadavpur University.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

130

This was the first attack on MD5. This did not threaten the usual applications of MD5,

since in normal situations one cannot control inputs of chaining variables.

A major step forward in the analysis of MD-based designs was made by H. Dobbertin who

developed a general method of attacking designs similar to MD4 in 1996. His method aims at

finding collisions and is based on describing the function as a system of complicated, non-

linear equations that represent the function. With this method he successfully attacked MD4

showing that one can find collisions using computational effort of around
202 hash

evaluations [10]. He also showed collisions for the compression function of MD5 with a

chosen IV [11].

The other family of dedicated hash function is SHA family. The first version of the Secure

Hash Algorithm (SHA) i.e. SHA-0 was presented by NIST in 1993. Two years later, this

function was slightly modified and an updated version of the standard was issued in 1995.

Indeed, in 1998 Chabaud and Joux presented a differential attack on the initially proposed

function, SHA-0, that can be used to find collisions with complexity of
612 hash evaluations.

Since SHA-0 and SHA-1 are different by a small change in the message expansion

algorithms, it is quite natural question to ask whether it is possible to extend the original

attack of Chabaud and Joux to the improved design of SHA-1. Due to the same round

structure, the same technique used to attack SHA-0 could be applied to launch an attack on

SHA-1 provided there exists a good enough differential pattern. Novel ideas of Wang et al.

contributed a lot in opening new avenues of analysis of SHA-1. It seems the ability to

influence the value of the new word of the state in each step combined with rather weak

message expansion algorithms is the fundamental weakness of designs of that family that can

be exploited that way or another.

In August 2002, NIST announced a new standard FIPS 180-2 that introduced three new

cryptographic hash functions viz. SHA-256, SHA-384 and SHA-512. In 2004 the

specification was updated with one more hash, SHA- 224. All these algorithms are very

closely related. In fact SHA-224 is just SHA-256 with truncated hash and SHA-384 is a

truncated version of SHA-512. These are called the SHA-2 family of hashes. The design of

SHA-512 is very similar to SHA-256, but it uses 64-bit words and some parameters are

different to accommodate for this change. Clearly, the fundamental design of this family is

SHA-256 and all the other algorithms are variations of that one, so the question of the

security of SHA-256 is an extremely interesting one.

We have designed a new hash function HF-hash using the restricted version of HFE

Challenge-1 as the compression function, which gives 256 bits message digest. We have used

the first 32 equations of HFE Challenge-1 with first 64 variables by setting remaining 16

variables to zero. Although the first proposal of designing hash function using quadratic or

higher degree multivariate polynomials over a finite field as the compression function was

given by Billet et. al. [4] as well as by Ding and Yang [12] in 2007, they did not present how

to design a secure hash function. In these papers they have used multivariate polynomials for

both cases viz. message expansion as well as message compression.

The compression function of HF-hash depends on the following well-known facts:

 Computing the values of a random set of m multivariate polynomials in n variables

over a finite field F viz.,)),,,(,),,,((111 nmn xxpxxp  for any fixed

),,(1 nxx  is easy.

 Finding a solution of this set of polynomial equations is an NP-hard problem
†
 [13].

† It is true even if we restrict the total degree of these polynomials to at least 2.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

131

The expansion procedure of HF-hash for a message block is very much similar to the

message expansion of SHA family but it differs in padding and parsing procedure from that

of SHA family.

In this paper we present a complete description of HF-hash, and its analysis in the

subsequent sections.

2. HF-hash

HF-hash function can take arbitrary length)2(64 of input and gives 256 bits output. We

have designed an iterative hash function, which uses restricted HFE Challenge-1 [8] as

compression function. The hash value of a message M of length l bits can be computed in the

following manner:

Padding: First we append 1 to the end of the message M. Let k be the number of zeros added

for padding. The 64-bit representation of l is appended to the end of k zeros. The padded

message M is shown in the following figure. Now k will be the smallest positive integer

satisfying the following condition:

448mod383.,.

448mod0641





lkei

kl

Figure 1. Padded Message M

Parsing: Let 'l be the length of the padded message. Divide the padded message into

)448/'(ln  448-bit block i.e. fourteen 32-bit words. Let
)(iM denote the

thi block of

the padded message, where ni1 and each word of
thi block is denoted by

.141)( jforM i

j

Initial Value: Take the first 256 bits initial value i.e., eight 32-bit words from the

expansion of the fractional part of  and hexadecimal representation of these eight

words are given below:

.8964,98082,031299,4093822

,03707344,213198,330885,886243

)0(

7

)0(

6

)0(

5

)0(

4

)0(

3

)0(

2

)0(

1

)0(

0

CEEChEFAhDFhAh

hEAhDAhAFh





Hash Computation: For each 448-bit block ,,,,)()2()1(nMMM  the following four

steps are executed for all the values of i from 1 to n.

1. Initialization

.70)1(  jforhH i

jj

M 1 k-bit 64-bit

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

132

2. Expansion

i. 00 HW 

ii. 141,)( jforMW i

jj

iii. 715 HW 

iv. ,6316),(1814163   jforWWWWrotlW jjjjj where

krotl denotes the left rotation by k.

This is the expansion of the message blocks without padding. In the last block

we apply padding rule. If 384)1(l bits, then we have two extra blocks in

the padded message. Otherwise we have one extra block in the padded message.

In both the cases, we apply the following expansion rule for the last block so

that the length of the message appears in the end of the padded message.
i. 00 HW 

ii. 71 HW 

iii. 152,)( jforMW i

jj

iv. 6316),(1814163   jforWWWWrotlW jjjjj

3. Iteration for j = 0 to 63

i. jKHHpHHT )||(03211

‡

ii. jWHHpHHT )||(67542

iii. 67 HH 

iv. 56 HH 

v. 45 HH 

vi.)(2354 THrotlH 

vii. 23 HH 

viii. 12 HH 

ix. 01 HH 

x. ,210 TTH  where 1T and 2T are two temporary variables and

3264 22
: ZZp  be a function defined by

).,,(.1),,(.2),,(.2)(641326412

30

6411

31 xxpxxpxxpxp   Since

any element 642
Zx can be represented by ,6421 xxx  where 6421 xxx 

denotes the bits of x in decreasing order of their significance. The polynomial

),,(641 xxpi  denotes the
thi polynomial of HFE challenge-1 with 64

variables by setting the remaining 16 variables to zero for 321 i and these

polynomials are found in

http://arxiv.org/PS cache/arxiv/pdf/0909/0909.1392v2.pdf

‡ The operation || denotes the concatenation and + denotes the addition mod
322 .

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

133

The 64 constants jK are taken from the fractional part of e and are given

below:
K0 = AC211BEC K1 = 5FEFE110 K2 = 112276F8 K3 = 8AE122A4

K4 = 18B3488B K5 = 00921A36 K6 = 40C045F8 K7 = C8C0A3DA

K8 = C4ABF676 K9 = 6A68C750 K10 = A37AFE0F K11 = 732806F3

K12 = 25722CB7 K13 = 3FF43825 K14 = ACDF96D7 K15 = 9B53BCD3

K16 = E34950DE K17 = D9780CCB K18 = 8B5F9BB7 K19 = 3D1182ED

K20 = 1921B44A K21 = 7003F30D K22 = 42657E31 K23 = 231E7B55

K24 = 91E3A28E K25 = 95CD4AB0 K26 = 0A0AC2E3 K27 = FCDEBE5E

K28 = FCF1E321 K29 = 1D136560 K30 = 2974BF63 K31 = 70963992

K32 = 4F5B5107 K33 = 0072C0C1 K34 = C99F3C1D K35 = C56598D9

K36 = 77A1D027 K37 = 36675FB6 K38 = A40C34E8 K39 = 46764EAD

K40 = F8823861 K41 = 19F66E64 K42 = 87E10299 K43 = 4311C8C2

K44 = 07C102B9 K45 = 9F4EC8CE K46 = 29D81EBA K47 = 992744F9

K48 = 4CDA6790 K49 = 13DA5357 K50 = BA6D7772 K51 = 80673F08

K52 = B049EE4C K53 = 839F8647 K54 = 736F658B K55 = EBE90F9B

K56 = FA6DC4D1 K57 = E951630E K58 = AFC453E4 K59 = 159B7483

K60 = 45EABF9D K61 = 4292A60E K62 = 17AA0ABD K63 = 94E81C30

4. Intermediate Hash Value

The
thi intermediate hash value

,||||||||||||||)(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

)(iiiiiiiii hhhhhhhhh 

where .70)( jforHh j

i

j This
)(ih will be the initial value for the message

block .)1(iM

The final hash value of the message M will be

,||||||||||||||)(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

nnnnnnnn hhhhhhhh

where .70)( iforHh i

n

i

Process of Implementation: In order to compute HF-hash(M), first the padding rule is

applied and then the padded message is divided into 448-bit blocks. Now each 448-bit

block is divided into fourteen 32-bit words and each 32-bit word is read in little endian

format. For example, suppose we have to read an ASCII file with data ‘abcd’, it will be

read as 0x64636261.

Test Value of HF-hash: Test values of the three inputs are given below:

HF-hash(a) = 04EAF5F6 B215D974 B827FCC2 5ECA45C3

 031524E8 472617D1 C14D9C85 6ACD1DC3

HF-hash(ab) = F2DD83C8 34E96291 E39040B9 BCD3E624

 BA01846E 0D5E5083 492DC4BF C0720235

HF-hash(abc) = E9582019 216033AA 346E8D46 11D131A7

 D0635A5E 92D5B13D 2DC481B8 836774B6

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

134

3. Analysis of HF-hash

In this section we will present the complete analysis of HF-hash, which includes

properties, efficiency, as well as the security analysis of this function.

3.1. Properties of HF-hash

This subsection describes the properties of HF-hash required for cryptographic

applications.

1. Easy to compute: For any given value x it is easy to compute HF-hash(x) and

the efficiency of this hash function is given in section 3.2.

2. One-wayness: Suppose one knows the HF-hash(x) for an input x. Now to find

the value of x, (s)he has to solve the system of polynomial equations consisting

of 32 polynomials with 64 variables for each round operation. Since this system

of equations is underdefined therefore XL method [7] or any variant of XL [27]

cannot be applied to solve this system.

Now if one wants to solve this system of equations using the Algorithm A
§

given by Courtois et. al. in [5], then at least
252 operations are required to solve

for one round of HF-hash. Since HF-hash has 64 rounds one has to compute
64252 

 operations to get back the value of x for given HF-hash(x). This is far

beyond the today‟s computation power. Thus, for any given HF-hash(x) it is

difficult to find the input x.

3. Randomness: We have taken an input file M consisting of 448 bits and

computed HF-hash(M). Then 448 flies iM are generated by changing the
thi bit

of M for .4481 i Then computed HF-hash(iM) of all the 448 files and

calculated the Hamming distance id between HF-hash(M) and HF-hash(iM) for

4481 i as well as the distances between corresponding eight 32-bit words of

the hash values. The following table shows the maximum, the minimum, the mode

and the mean values of the above distances.

Table 1

Changes
1W 2W 3W 4W 5W 6W 7W 8W HF-hash

Max 25 24 24 26 25 23 23 24 149

Min 6 7 7 8 7 8 9 8 103

Mode 14 17 17 16 16 17 16 15 132

Mean 16 16 16 16 16 16 16 16 128

For ideal case id should be 128 for .4481 i But we have found that id ‟s

were lying between 103 and 149 for the above files. The following bar chart and

the table show the distribution of above 448 files with respect to their distances.

§ Algorithm A is the best algorithm for solving our system of equations among Algorithms A, B & C.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

135

Figure 2. Frequency Distribution

Table 2

The above analyses show that HF-hash exhibits a reasonably good avalanche effect.

Thus it can be used for cryptographic applications.

3.2. Efficiency of HF-hash

The following table gives a comparative study in the efficiency of HF-hash with

SHA-256 in HP Pentium - D with 3 GHz processor and 512 MB RAM.

Table 3

Although, SHA-256 is little bit faster than HF-hash but HF-hash is more secure than

SHA-256 in case of either collision search or differential attack. Since the design

Range

of Distance

No. of

Files

Percentage

5128  215 47.99

10128  362 80.80

15128  421 93.97

20128  443 98.88

File Size

(in MB)

SHA-256

(in Sec.)
HF-hash

(in Sec)

1.4 18.64 20.02

4.84 60.08 67.72

7.48 103.59 109.73

12.94 169.19 181.01

24.3 313.53 345.53

Distance

F
req

u
en

cy

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

136

principle of SHA-256 is almost similar to that of SHA-1, therefore all the attacks

applied to SHA-1 can also be extended to SHA-256.

3.3. Security Analysis

In this paper we have applied a new method for expanding a 512-bit message block

into 2048-bit block. For this purpose we have to change the padding rule and the

procedure of parsing a padded message. In case of MD-5, SHA-1 and SHA-256, the

padded message is divided into 512-bit blocks whereas in case of HF-hash, the padded

message is divided into 448-bit blocks. Then two 32-bit words are added to construct a

512-bit block as the input for each iteration, where these two words depend on the

previous internal hash updates or chaining variables. So, in each iteration, the 512-bit

blocks are not independent from the previous message blocks as in the case of MD-5,

SHA-1 or SHA-256. Message expansion algorithm of HF-hash is dependent on the first

and last word of the previous hash. Now if small change is occurred in the inputs, the

intermediate hash values will be different. Thus we will get the differences in first and

last words of intermediate hash values. These differences along with the rotation in the

message expansion formula make impossible to find corrective pattern described in [6].

Thus, differential attack by Chabaud and Joux is not applicable to our hash function

because one does not have any control over two 32-bit words coming from the previous

internal hash updates.

Moreover, a 1-bit difference in any one of fourteen initial 32-bit words propagates

itself to at least 165 bits of the expanded message since we have taken the 64 round

operations. Less than 75 bit difference in expanded message and input message is

obtained by changing 1-bit input when 32 or 48 round operations are performed. That is

why we have taken 64 round operations for HF-hash function. This makes it impossible

to find corrective patterns used by Chabaud and Joux in [6], due to the reason that

differences propagate to other positions.

The idea of Wang et. al. for finding collision in SHA-0 [26] and SHA-1 [25] is to

find out the disturbance vectors with low Hamming weight first and then to construct a

differential path. To construct a valid differential path, it is important to control the

difference propagation in each chaining variable. After identifying the wanted and

unwanted differences one can apply the Boolean functions (mainly IF) and the carry

effect to cancel out these differences. In particular, when an input difference is 1, the

output difference can be 1, -1 or 0. Hence, the function can preserve, flip or absorb an

input difference. This gives a good flexibility to construct a differential path. The key

of these attacks was the Boolean functions used in compression function, which in

combination with carry effect facilitate the differential attack.

We have replaced the Boolean functions with restricted hidden field polynomials.

Now if we change 1 bit in the inputs of HF-hash, the outputs will be the same after one

round of operation of the compression function. Because, this input difference will not

effect since in our case .00 HW  But this input difference will appear in .1W Thus, the

output differences will be found after two rounds of computing compression function.

We have computed the difference propagation of chaining variables for several files

having 1 bit input difference and the result is given in the following table.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

137

Table 4

Round Minimum Maximum

2 35 53

3 63 134

4 88 144

5 104 145

This shows that it is impossible to control the difference propagation of chaining

variable after round two. Therefore, these attacks are not applicable to our hash

function.

Although the cross dependence equation described by Sanadhya and Sarkar in [22]

can be formed in case of HF-hash, the procedure of message expansion as well as the

compression function of HF-hash being different from SHA-2 family, this procedure

for finding collision cannot be applied in our hash function. Thus, this hash function is

also collision resistance against the method described by Sanadhya and Sarkar.

Thus the compression function of HF-hash is collision-resistant against existing

attacks. Since IV of HF-hash is fixed and the padding procedure of HF-hash includes

the length of the message, therefore by Merkle-Damgard theorem [9] [14] we can say

that HF-hash is collision resistant against existing attacks.

4. Conclusions

In this paper a dedicated hash function HF-hash has been presented. The differential

attack applied by Chabaud and Joux in SHA-0, collision search for SHA-1 by Wang et.

al. as well as collision search method applied by Sarkar et. al. for SHA-2 family are not

applicable to this hash function. The main differences of HF-hash with MD family and

SHA family lie in the procedure of message expansion and the compression function. A

system of multivariate polynomials taken from HFE challenge-1 (restricted form) is

used for designing the compression function of this hash function. Analysis of this hash

functions viz. randomness as well as security proof are also described here.

The system of equations in HFE challenge-1 is neither regular system nor the

minimal set of polynomials. Presently we are looking at the behavior of HF-hash when

the minimal system or the Groebner basis of the ideal generated by the above system or

randomly selected 32 polynomials with 64 variables is taken.

References

[1] B. Boer and A. Bosselaers, “An Attack on the Last Two Rounds of MD4”, in Advances in Cryptology –

CRYPTO ‟91, LNCS 0576, pages 194 - 203, Springer-Verlag, 1991.

[2] B. Boer and A. Bosselaers, “Collisions for the Compression Function of MD5”, in Advances in Cryptology
EUROCRYPT ‟93, LNCS 0765, pages 293 - 304, Springer-Verlag, 1994.

[3] A. Bosselaers and B. Preneel, editors, “Integrity Primitives for Secure Information Systems”, Final Report of

RACE Integrity Primitives Evaluation, LNCS 1007, Springer-Verlag, 1995.

[4] O. Billet, M. Robshaw and T. Peyrin, “On Building Hash Functions from Multivariate Quadratic Equations”,
ACISP, LNCS 4586, pages 82 - 95, Springer, 2007.

[5] N. Courtois, L. Goubin, W. Meier and J. Tacier, “Solving Underdefined Systems of Multivariate Quadratic
Equation”, PKC ‟02, LNCS 2274, pages 211 - 227, Springer-Verlag, 2002.

[6] F. Chabaud and A. Joux, “Differential Collisions in SHA-0”, in Advances in Cryptology – CRYPTO ‟98,
LNCS 1462, pages 56 - 71, Springer-Verlag, 1998.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

138

[7] N. Courtois, A. Klimov, J. Patarin and A. Shamir, “Efficient Algorithms for Solving Overdefined Systems of

Multivariate Polynomial Equations”, EUROCRYPT ‟2000, LNCS 1807, pages 392 - 407, Springer-Verlag,
2000.

[8] N. Courtois, “Hidden Field Equation Challenge – 1”, 1998. Available online at www.univ-
tln.fr/~courtois/hfe.html

[9] I. B. Damgard, “A Design Principle for Hash Functions”, in Advances in Cryptology CRYPTO ‟89, pages
416 - 427, Springer-Verlag, 1990.

[10] H. Dobbertin, “Cryptanalysis of MD4”, in Fast Software Encryption FSE ‟96, LNCS 1039, pages 53 - 69,
Springer-Verlag, 1996.

[11] H. Dobbertin, “Cryptanalysis of MD5”, Presented at the rump session of EUROCRYPT ‟96, pages 12 - 16,
1996.

[12] J. Ding and B. Yang, “Multivariate Polynomials for Hashing”, in Cryptology ePrint Archive, Report
2007/137, 2007. Available online at http://eprint.iacr.org/2007/137.pdf

[13] M. Garey and D. Johnson, “Computers and Intractability - A Guide to the Theory of NP-completeness”,
Freeman and Co., 1979.

[14] R. C. Merkle, “One-way Hash Functions and DES”, in Advances in Cryptology CRYPTO ‟89 pages 428 -

446, Springer-Verlag, 1990.

[15] National Institute of Technology, “Secure Hash Standard”, FIPS Publication-180, 1993.

[16] National Institute of Technology, “Secure Hash Standard”, FIPS Publication-180-1, 1995.

[17] National Institute of Technology, “Secure Hash Standard”, FIPS Publication-180-2, 2002.

[18] B. Preneel, A. Bosselaers and H. Dobbertin, “RIPEMD-160: A Strengthened Version of RIPEMD”, in Fast
Software Encryption FSE ‟96, LNCS 1039, pages 71 - 82, Springer-Verlag, 1997.

[19] N. K. Park, J. H. Hwang and P. J. Lee, “HAS-V: A New Hash Function with Variable Output Length”, in
Selected Areas in Cryptography SAC ‟00, LNCS 2012, pages 202 - 216, Springer-Verlag, 2000.

[20] R. L. Rivest, “The MD4 Message Digest Algorithm”, in Advances in Cryptology – CRYPTO ‟90, LNCS 0537,
pages 303 - 311, Springer-Verlag, 1991.

[21] R. L. Rivest, “The MD5 Message Digest Algorithm”, Request for Comments (RFC) 1321, Internet
Engineering Task Force, April 1992.

[22] S. Sanadhya and P. Sarkar, “Attacking Step Reduced SHA-2 Family in a Unified Framework”, in Cryptology
ePrint Archive, Report 2008/271, 2008. Available online at http://eprint.iacr.org/2008/271.pdf

[23] Telecommunications Technology Association of Korea, “Hash Function Standard Part 2: Hash Function

Algorithm Standard (HAS-160)”, TTA Standard TTAS.KO-12.0011, 1998. Available online at
http://www.tta.or.kr/English/new/standardization/engttastddesc.jsp?stdno=TTAS.KO-12.0011

[24] S. Vaudenay, “On the Need for Multi-permutations: Cryptanalysis of MD4 and SAFER”, in Fast Software
Encryption FSE „94, LNCS 1008, pages 286 297, Springer-Verlag, 1995.

[25] X. Wang, Y. Yin and H. Yu, “Finding Collisions in the Full SHA-1”, in Advances in Cryptology
CRYPTO ‟05, LNCS 3621, pages 17 - 36, Springer, 2005.

[26] X. Wang, H. Yu and Y. Yin, “Efficient Collision Search Attacks on SHA-0”, in Advances in Cryptology
CRYPTO ‟05, LNCS 3621, pages 1 - 16, Springer, 2005.

[27] P. Yang and J. Chen, “All in the XL Family: Theory and Practice”, Available online at
http://precision.moscito.org/by-pub/recent/xxl.pdf

[28] Y. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL - a One-way Hashing Algorithm with Variable Length of
Output”, in Advances in Cryptology AUSCRYPT ‟92, LNCS 0718, pages 83 - 104, Springer-Verlag, 1993.

Authors

Dhananjoy Dey received his Master degree in Mathematics from

Jadavpur University in 1998. After that he joined DRDO in 2000 at SAG,

Delhi, INDIA. Currently he is pursuing his PhD from Jadavpur

University. His current research interests include the analysis of

multivariate public key cryptography and the design and analysis of

cryptographic hash functions and block ciphers.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

139

Dr. Prasanna Raghaw Mishra did his Master degree in Mathematics

from VBS Purvanchal University in 1997. He received his PhD degree in

Number Theory from Banaras Hindu University. He joined DRDO in

March 2003 and was posted to SAG in August 2003. His current research

interests include the design and analysis of cryptographic hash functions

and the crypto-algorithms.

Dr. Indranath Sengupta received his Ph.D. degree from the Indian

Institute of Science, Bangalore, INDIA in the year 2001. He is now a

Reader in the department of Mathematics, Jadavpur University, where he

has been teaching since 2001. His current research interest is

Commutative Algebra, Algebraic Geometry and its applications to

Cryptology.

International Journal of Advanced Science and Technology

Vol. 37, December, 2011

140

