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Abstract 
 

Vulnerability of dedicated hash functions to various attacks has made the task of designing 

hash function much more challenging. This provides us a strong motivation to design a new 

cryptographic hash function viz. HF-hash. This is a hash function, whose compression 

function is designed by using first 32 polynomials of HFE Challenge-1 [8] with 64 variables 

by forcing remaining 16 variables as zero. HF-hash gives 256 bits message digest and is as 

efficient as SHA-256. It is secure against the differential attack proposed by Chabaud and 

Joux in [6] as well as by Wang et. al. in [25] applied to SHA-0 and SHA-1. We have also 

compared the efficiency of our HF-hash with SHA-256. 
 

Keywords: Collision search attack, dedicated hash functions, differential attack, HFE 

challenge 
 

1. Introduction 
 

The majority of dedicated hash functions published are more or less designed using ideas 

inspired by hash functions MD4 [20] and MD5 [21]. Not only the hash functions HAVAL 

[28], RIPEMD [3], RIPEMD-160 [18] but also SHA-0 [15], SHA-1 [16] and SHA-2 family 

[17] are designed using the similar ideas. The hash functions HAS-160 [23] and HAS-V [19] 

both exhibit strong resemblance with SHA-1. 

While comparing compression functions of the aforementioned hash functions it is easy to 

observe that all of them have the three fundamental parts viz. the message expansion 

algorithm which is required for creating more disturbance pattern for the input to the 

compression function, the iteration of the step transformation which is required for taking 

arbitrary length of input and the state feed-forward operation which is required for updating 

the chaining variables or the internal hash value. 

The most commonly used dedicated hash functions are MD5 and SHA-1. The first member 

of the MD family, viz. MD4 was published in 1990. After one year, an attack on the last two 

out of three rounds has been presented in [1]. After that Rivest designed the improved version 

of MD4, called MD5. Later, Vaudenay showed that the first two rounds of MD4 are not 

collision-resistant and it is possible to get near-collisions for the full MD4 [24]. 

In 1993, Boer and Bosselaers [2] showed that it is possible to find pseudo-collisions for the 

compression function of MD5, i.e. they showed a way of finding two different values of the 

initial value IV for the same message M such that 

).,(5),(5 ' MIVcompressMDMIVcompressMD   

                                                           
* This work was done while the author was visiting the Ramakrishna Mission Vivekananda University, Belur Math, 

Howrah, WB 711 202, INDIA on Lien from the Jadavpur University. 
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This was the first attack on MD5. This did not threaten the usual applications of MD5, 

since in normal situations one cannot control inputs of chaining variables. 

A major step forward in the analysis of MD-based designs was made by H. Dobbertin who 

developed a general method of attacking designs similar to MD4 in 1996. His method aims at 

finding collisions and is based on describing the function as a system of complicated, non-

linear equations that represent the function. With this method he successfully attacked MD4 

showing that one can find collisions using computational effort of around 
202  hash 

evaluations [10]. He also showed collisions for the compression function of MD5 with a 

chosen IV [11]. 

The other family of dedicated hash function is SHA family. The first version of the Secure 

Hash Algorithm (SHA) i.e. SHA-0 was presented by NIST in 1993. Two years later, this 

function was slightly modified and an updated version of the standard was issued in 1995. 

Indeed, in 1998 Chabaud and Joux presented a differential attack on the initially proposed 

function, SHA-0, that can be used to find collisions with complexity of 
612  hash evaluations. 

Since SHA-0 and SHA-1 are different by a small change in the message expansion 

algorithms, it is quite natural question to ask whether it is possible to extend the original 

attack of Chabaud and Joux to the improved design of SHA-1. Due to the same round 

structure, the same technique used to attack SHA-0 could be applied to launch an attack on 

SHA-1 provided there exists a good enough differential pattern. Novel ideas of Wang et al. 

contributed a lot in opening new avenues of analysis of SHA-1. It seems the ability to 

influence the value of the new word of the state in each step combined with rather weak 

message expansion algorithms is the fundamental weakness of designs of that family that can 

be exploited that way or another.  

In August 2002, NIST announced a new standard FIPS 180-2 that introduced three new 

cryptographic hash functions viz. SHA-256, SHA-384 and SHA-512. In 2004 the 

specification was updated with one more hash, SHA- 224. All these algorithms are very 

closely related. In fact SHA-224 is just SHA-256 with truncated hash and SHA-384 is a 

truncated version of SHA-512. These are called the SHA-2 family of hashes. The design of 

SHA-512 is very similar to SHA-256, but it uses 64-bit words and some parameters are 

different to accommodate for this change. Clearly, the fundamental design of this family is 

SHA-256 and all the other algorithms are variations of that one, so the question of the 

security of SHA-256 is an extremely interesting one. 

We have designed a new hash function HF-hash using the restricted version of HFE 

Challenge-1 as the compression function, which gives 256 bits message digest. We have used 

the first 32 equations of HFE Challenge-1 with first 64 variables by setting remaining 16 

variables to zero. Although the first proposal of designing hash function using quadratic or 

higher degree multivariate polynomials over a finite field as the compression function was 

given by Billet et. al. [4] as well as by Ding and Yang [12] in 2007, they did not present how 

to design a secure hash function. In these papers they have used multivariate polynomials for 

both cases viz. message expansion as well as message compression. 

The compression function of HF-hash depends on the following well-known facts: 

 Computing the values of a random set of m multivariate polynomials in n variables 

over a finite field F viz., )),,,(,),,,(( 111 nmn xxpxxp   for any fixed 

),,( 1 nxx   is easy.  

 Finding a solution of this set of polynomial equations is an NP-hard problem
†
 [13]. 

                                                           
† It is true even if we restrict the total degree of these polynomials to at least 2.  
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The expansion procedure of HF-hash for a message block is very much similar to the 

message expansion of SHA family but it differs in padding and parsing procedure from that 

of SHA family. 

In this paper we present a complete description of HF-hash, and its analysis in the 

subsequent sections. 
 

2. HF-hash 
 

HF-hash function can take arbitrary length )2( 64  of input and gives 256 bits output. We 

have designed an iterative hash function, which uses restricted HFE Challenge-1 [8] as 

compression function. The hash value of a message M of length l bits can be computed in the 

following manner: 
 

Padding: First we append 1 to the end of the message M. Let k be the number of zeros added 

for padding. The 64-bit representation of l is appended to the end of k zeros. The padded 

message M is shown in the following figure. Now k will be the smallest positive integer 

satisfying the following condition: 

 

448mod383.,.

448mod0641





lkei

kl
 

 

 

 

 

Figure 1. Padded Message M 
 

Parsing: Let 'l  be the length of the padded message. Divide the padded message into 

)448/'( ln   448-bit block i.e. fourteen 32-bit words. Let 
)(iM  denote the 

thi  block of 

the padded message, where ni1  and each word of 
thi  block is denoted by 

.141)(  jforM i

j  

 

Initial Value: Take the first 256 bits initial value i.e., eight 32-bit words from the 

expansion of the fractional part of   and hexadecimal representation of these eight 

words are given below: 

 

.8964,98082,031299,4093822

,03707344,213198,330885,886243

)0(

7

)0(

6

)0(

5

)0(

4

)0(

3

)0(

2

)0(

1

)0(

0

CEEChEFAhDFhAh

hEAhDAhAFh




 

 

Hash Computation: For each 448-bit block ,,,, )()2()1( nMMM   the following four 

steps are executed for all the values of i from 1 to n. 
 

1. Initialization  

.70)1(   jforhH i

jj  

M 1 k-bit 64-bit 
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2. Expansion  

i. 00 HW   

ii. 141,)(  jforMW i

jj  

iii. 715 HW   

iv. ,6316),( 1814163   jforWWWWrotlW jjjjj where 

krotl  denotes the left rotation by k. 

 

This is the expansion of the message blocks without padding. In the last block 

we apply padding rule. If 384)1( l bits, then we have two extra blocks in 

the padded message. Otherwise we have one extra block in the padded message. 

In both the cases, we apply the following expansion rule for the last block so 

that the length of the message appears in the end of the padded message. 
i. 00 HW   

ii. 71 HW   

iii. 152,)(  jforMW i

jj  

iv. 6316),( 1814163   jforWWWWrotlW jjjjj  

 

3. Iteration for j = 0 to 63  

i. jKHHpHHT  )||( 03211

‡
 

ii. jWHHpHHT  )||( 67542  

iii. 67 HH   

iv. 56 HH   

v. 45 HH   

vi. )( 2354 THrotlH   

vii. 23 HH   

viii. 12 HH   

ix. 01 HH   

x. ,210 TTH  where 1T and 2T are two temporary variables and 

3264 22
: ZZp  be a function defined by 

).,,(.1),,(.2),,(.2)( 641326412

30

6411

31 xxpxxpxxpxp    Since 

any element 642
Zx can be represented by ,6421 xxx   where 6421 xxx   

denotes the bits of x in decreasing order of their significance. The polynomial 

),,( 641 xxpi   denotes the 
thi  polynomial of HFE challenge-1 with 64 

variables by setting the remaining 16 variables to zero for 321 i and these 

polynomials are found in  

http://arxiv.org/PS cache/arxiv/pdf/0909/0909.1392v2.pdf 
                                                           

‡ The operation || denotes the concatenation and + denotes the addition mod
322 . 



International Journal of Advanced Science and Technology 

Vol. 37, December, 2011 

 

 

133 

 

The 64 constants jK are taken from the fractional part of e and are given 

below: 
K0 = AC211BEC  K1 = 5FEFE110  K2 = 112276F8  K3 = 8AE122A4 

K4 = 18B3488B  K5 = 00921A36  K6 = 40C045F8  K7 = C8C0A3DA 

K8 = C4ABF676  K9 = 6A68C750  K10 = A37AFE0F  K11 = 732806F3 

K12 = 25722CB7 K13 = 3FF43825  K14 = ACDF96D7  K15 = 9B53BCD3 

K16 = E34950DE  K17 = D9780CCB  K18 = 8B5F9BB7  K19 = 3D1182ED 

K20 = 1921B44A  K21 = 7003F30D  K22 = 42657E31  K23 = 231E7B55 

K24 = 91E3A28E  K25 = 95CD4AB0  K26 = 0A0AC2E3  K27 = FCDEBE5E 

K28 = FCF1E321  K29 = 1D136560  K30 = 2974BF63  K31 = 70963992 

K32 = 4F5B5107  K33 = 0072C0C1  K34 = C99F3C1D  K35 = C56598D9 

K36 = 77A1D027  K37 = 36675FB6  K38 = A40C34E8  K39 = 46764EAD 

K40 = F8823861  K41 = 19F66E64  K42 = 87E10299  K43 = 4311C8C2 

K44 = 07C102B9  K45 = 9F4EC8CE  K46 = 29D81EBA  K47 = 992744F9 

K48 = 4CDA6790  K49 = 13DA5357  K50 = BA6D7772  K51 = 80673F08 

K52 = B049EE4C K53 = 839F8647  K54 = 736F658B  K55 = EBE90F9B 

K56 = FA6DC4D1  K57 = E951630E  K58 = AFC453E4  K59 = 159B7483 

K60 = 45EABF9D  K61 = 4292A60E  K62 = 17AA0ABD  K63 = 94E81C30 

 

4. Intermediate Hash Value 
 

The 
thi intermediate hash value 

,|||||||||||||| )(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

)( iiiiiiiii hhhhhhhhh   

where .70)(  jforHh j

i

j  This 
)(ih  will be the initial value for the message 

block .)1( iM   
 

The final hash value of the message M will be 

,|||||||||||||| )(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

nnnnnnnn hhhhhhhh  

where .70)(  iforHh i

n

i  

 

Process of Implementation: In order to compute HF-hash(M), first the padding rule is 

applied and then the padded message is divided into 448-bit blocks. Now each 448-bit 

block is divided into fourteen 32-bit words and each 32-bit word is read in little endian 

format. For example, suppose we have to read an ASCII file with data ‘abcd’, it will be 

read as 0x64636261. 
 

Test Value of HF-hash: Test values of the three inputs are given below: 
 

HF-hash(a) = 04EAF5F6 B215D974 B827FCC2 5ECA45C3 

  031524E8 472617D1  C14D9C85  6ACD1DC3 
 

HF-hash(ab) =  F2DD83C8  34E96291  E39040B9  BCD3E624 

  BA01846E  0D5E5083  492DC4BF  C0720235 
 

HF-hash(abc) =  E9582019  216033AA  346E8D46  11D131A7 

  D0635A5E  92D5B13D  2DC481B8  836774B6 
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3. Analysis of HF-hash 
 

In this section we will present the complete analysis of HF-hash, which includes 

properties, efficiency, as well as the security analysis of this function.  
 

3.1. Properties of HF-hash  
 

This subsection describes the properties of HF-hash required for cryptographic 

applications. 

1. Easy to compute: For any given value x it is easy to compute HF-hash(x) and 

the efficiency of this hash function is given in section 3.2. 

2. One-wayness: Suppose one knows the HF-hash(x) for an input x. Now to find 

the value of x, (s)he has to solve the system of polynomial equations consisting 

of 32 polynomials with 64 variables for each round operation. Since this system 

of equations is underdefined therefore XL method [7] or any variant of XL [27] 

cannot be applied to solve this system.  

Now if one wants to solve this system of equations using the Algorithm A
§
 

given by Courtois et. al. in [5], then at least 
252 operations are required to solve 

for one round of HF-hash. Since HF-hash has 64 rounds one has to compute 
64252 

 operations to get back the value of x for given HF-hash(x). This is far 

beyond the today‟s computation power. Thus, for any given HF-hash(x) it is 

difficult to find the input x. 

3. Randomness: We have taken an input file M consisting of 448 bits and 

computed HF-hash(M). Then 448 flies iM are generated by changing the 
thi  bit 

of M for .4481 i  Then computed HF-hash( iM ) of all the 448 files and 

calculated the Hamming distance id between HF-hash(M) and HF-hash( iM ) for 

4481 i  as well as the distances between corresponding eight 32-bit words of 

the hash values. The following table shows the maximum, the minimum, the mode 

and the mean values of the above distances.  

 

Table 1 
 

Changes 
1W  2W  3W  4W  5W  6W  7W  8W  HF-hash 

Max 25 24 24 26 25 23 23 24 149 

Min 6 7 7 8 7 8 9 8 103 

Mode 14 17 17 16 16 17 16 15 132 

Mean 16 16 16 16 16 16 16 16 128 
 

For ideal case id should be 128 for .4481 i  But we have found that id ‟s 

were lying between 103 and 149 for the above files. The following bar chart and 

the table show the distribution of above 448 files with respect to their distances.  

                                                           
§ Algorithm A is the best algorithm for solving our system of equations among Algorithms A, B & C. 
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Figure 2. Frequency Distribution 

 
 

Table 2 
 
 
 

 

 
 

 

 
 

The above analyses show that HF-hash exhibits a reasonably good avalanche effect. 

Thus it can be used for cryptographic applications. 
 

3.2. Efficiency of HF-hash  
 

The following table gives a comparative study in the efficiency of HF-hash with 

SHA-256 in HP Pentium - D with 3 GHz processor and 512 MB RAM. 

 

Table 3 
 

 

 

 

 

 

 

 

 

Although, SHA-256 is little bit faster than HF-hash but HF-hash is more secure than 

SHA-256 in case of either collision search or differential attack. Since the design 

Range 

of Distance 

No. of 

Files 

Percentage 

5128   215 47.99 

10128   362 80.80 

15128   421 93.97 

20128   443 98.88 

File Size 

(in MB) 

SHA-256 

(in Sec.) 
HF-hash 

(in Sec) 

1.4 18.64 20.02 

4.84 60.08 67.72 

7.48 103.59 109.73 

12.94 169.19 181.01 

24.3 313.53 345.53 

Distance 

F
req

u
en

cy
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principle of SHA-256 is almost similar to that of SHA-1, therefore all the attacks 

applied to SHA-1 can also be extended to SHA-256. 
 

3.3. Security Analysis 
 

In this paper we have applied a new method for expanding a 512-bit message block 

into 2048-bit block. For this purpose we have to change the padding rule and the 

procedure of parsing a padded message. In case of MD-5, SHA-1 and SHA-256, the 

padded message is divided into 512-bit blocks whereas in case of HF-hash, the padded 

message is divided into 448-bit blocks. Then two 32-bit words are added to construct a 

512-bit block as the input for each iteration, where these two words depend on the 

previous internal hash updates or chaining variables. So, in each iteration, the 512-bit 

blocks are not independent from the previous message blocks as in the case of MD-5, 

SHA-1 or SHA-256. Message expansion algorithm of HF-hash is dependent on the first 

and last word of the previous hash. Now if small change is occurred in the inputs, the 

intermediate hash values will be different. Thus we will get the differences in first and 

last words of intermediate hash values. These differences along with the rotation in the 

message expansion formula make impossible to find corrective pattern described in [6]. 

Thus, differential attack by Chabaud and Joux is not applicable to our hash function 

because one does not have any control over two 32-bit words coming from the previous 

internal hash updates. 

Moreover, a 1-bit difference in any one of fourteen initial 32-bit words propagates 

itself to at least 165 bits of the expanded message since we have taken the 64 round 

operations. Less than 75 bit difference in expanded message and input message is 

obtained by changing 1-bit input when 32 or 48 round operations are performed. That is 

why we have taken 64 round operations for HF-hash function. This makes it impossible 

to find corrective patterns used by Chabaud and Joux in [6], due to the reason that 

differences propagate to other positions. 

The idea of Wang et. al. for finding collision in SHA-0 [26] and SHA-1 [25] is to 

find out the disturbance vectors with low Hamming weight first and then to construct a 

differential path. To construct a valid differential path, it is important to control the 

difference propagation in each chaining variable. After identifying the wanted and 

unwanted differences one can apply the Boolean functions (mainly IF) and the carry 

effect to cancel out these differences. In particular, when an input difference is 1, the 

output difference can be 1, -1 or 0. Hence, the function can preserve, flip or absorb an 

input difference. This gives a good flexibility to construct a differential path. The key 

of these attacks was the Boolean functions used in compression function, which in 

combination with carry effect facilitate the differential attack. 

We have replaced the Boolean functions with restricted hidden field polynomials. 

Now if we change 1 bit in the inputs of HF-hash, the outputs will be the same after one 

round of operation of the compression function. Because, this input difference will not 

effect since in our case .00 HW   But this input difference will appear in .1W  Thus, the 

output differences will be found after two rounds of computing compression function. 

We have computed the difference propagation of chaining variables for several files 

having 1 bit input difference and the result is given in the following table.  
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Table 4 

Round Minimum Maximum 

2 35 53 

3 63 134 

4 88 144 

5 104 145 
 

This shows that it is impossible to control the difference propagation of chaining 

variable after round two. Therefore, these attacks are not applicable to our hash 

function. 

Although the cross dependence equation described by Sanadhya and Sarkar in [22] 

can be formed in case of HF-hash, the procedure of message expansion as well as the 

compression function of HF-hash being different from SHA-2 family, this procedure 

for finding collision cannot be applied in our hash function. Thus, this hash function is 

also collision resistance against the method described by Sanadhya and Sarkar. 

Thus the compression function of HF-hash is collision-resistant against existing 

attacks. Since IV of HF-hash is fixed and the padding procedure of HF-hash includes 

the length of the message, therefore by Merkle-Damgard theorem [9] [14] we can say 

that HF-hash is collision resistant against existing attacks. 
 

4. Conclusions 
 

In this paper a dedicated hash function HF-hash has been presented. The differential 

attack applied by Chabaud and Joux in SHA-0, collision search for SHA-1 by Wang et. 

al. as well as collision search method applied by Sarkar et. al. for SHA-2 family are not 

applicable to this hash function. The main differences of HF-hash with MD family and 

SHA family lie in the procedure of message expansion and the compression function. A 

system of multivariate polynomials taken from HFE challenge-1 (restricted form) is 

used for designing the compression function of this hash function. Analysis of this hash 

functions viz. randomness as well as security proof are also described here. 

The system of equations in HFE challenge-1 is neither regular system nor the 

minimal set of polynomials. Presently we are looking at the behavior of HF-hash when 

the minimal system or the Groebner basis of the ideal generated by the above system or 

randomly selected 32 polynomials with 64 variables is taken. 
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