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Abstract. In 2003, Augot et al. introduced the Fast Syndrome-Based hash family (in short FSB),
which follows the generic construction of Merkle-Damgard and is based on the syndrome decoding
problem. In 2007, Finiasz et al. proposed an improved version of FSB. In this work, we propose a new
efficient hash function, which incorporates the ideas of FSB and the sponge construction introduced
by Bertoni et al. Our proposal is up to 30 % faster in practice than FSB. Its security is related on the
Regular Syndrome (RSD) Decoding problem, which is proven NP-complete.
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1 Introduction

A hash function maps strings of any length into short strings of fixed length, called hash or digest. For
practical uses, hash functions should be easy to compute. That is, computing the hash value of a message m
should be feasible in time polynomial in the size of m. Furthermore, if the hash function additionally satisfies
certain security properties, it becomes a powerful tool for cryptographic applications such as digital signa-
tures, conventional message authentication, password protection and pseudo-random number generation.

Over the last years, a long list of hash functions has been proposed in the literature. Following cryptanalytical
advances, most of the widely used in practice (e.g. SHA-1) have been found to be insecure [12,26]. This
has called into question the long-term security of later algorithms that share a similar design like SHA-2
family [23]. As a reaction, in 2007 the US National Institute of Standards and Technology (NIST) has opened
a public competition, called SHA-3 (or the Advanced Hash Standard (AHS)), to develop new families of hash
functions. Initially, 64 candidates have been submitted following different design principles, and only 4 of the
competing designs passed to the third (and final) round of the contest. One of the first round submissions is
the Fast Syndrome-Based hash Function (FSB) introduced first by Augot, Finiasz, and Sendrier [1] in 2003
and improved by Finiasz, Gaborit, and Sendrier [16] in 2007. The FSB is still unbroken up to now. It has a
security reduction to NP-complete problems from coding theory, that are believed to be difficult on average.
However, the main drawback of FSB is the efficiency issue because it is slower than other competing hash
functions. For that reason, FSB was removed since the second round. We compensate for this disadvantage
and speed up the process of hash computing by following a different design principle.

Instead of building the hash function upon the Merkle-Damgard design principle [22,15], we improve FSB
further following the sponge construction, which is used in many hash functions like the SHA-3-finalist Kec-
cack hash function [9].

Our contribution. In this paper we describe a new code-based hash function following the sponge con-
struction. The mapping within FSB applied in a sponge hash function scheme results in a more efficient hash
family than the origin FSB. We come up with detailed security analysis, including collision resistance and
(second) preimage resistance.

Even though we reuse the transformation within FSB for our hash family, we show that their security results
cannot be conveyed directly. Furthermore, the security analysis for a hash function built upon a sponge
construction are given only for assuming random transformation. We go into detail how the security reacts
when instantiated with a transformation given in FSB. Upon this analysis and the current state of the art
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in cryptanalytic algorithms tackling the hard underlying problems within our scheme, we propose some pa-
rameters for fast and secure hashing.

Organization. The paper is organized as follows. Section 2 provides preliminaries. In Section 3 we briefly
describe the related works that help us to construct our proposal. In Section 4 we present our construction.
We analyze its security in Section 5. In Section 6 we propose some set of parameters for fast hashing. Sec-
tion 7 presents the performance evaluation results of our proposal.

2 Preliminaries

Properties of Hash Functions. Hash functions are functions that map bit strings of arbitrary length into
short fixed bit strings of length [. Besides the compressing property, “good” hash functions fulfill further
properties like collision resistance and onewayness. Informally, collision resistance states that it is infeasible
to find two distinct input values mapping to the same string when applied on the hash function. Furthermore,
onewayeness states that it is infeasible to return a pre-image when given an output of the hash function (hash
value).

Next, we state formal definitions of collision resistance and (second) pre-image resistance.

Definition 1 (Security Properties for Hash Functions). A family of hash functions Hy : {0,1}* —
{0, 1} with k € K for some finite set K is collision resistant if for any probabilistic polynomial-time (PPT)
algorithm A the probability that the experiment Colfi evaluates to 1 is negligible (as a function of X). Hy, is
pre-image (resp. second pre-image) resistant if for any PPT algorithm A the probability that the experiment
Prelmg’{ (resp. SecPrel ) evaluates to 1 is negligible (as a function of \). Let Kg: X — k be a generator for
the keys of hash function Hj where k € K.

Experiment SecPre’f()\)

Ezxperiment Col’k (\) Experiment Prelmg’ ()\) k — Kg(\)
k— Kg(\) k — Kg()\) I {og 1}
(,0/) — Alk) e — {01 o Alk,2)

Return 1 iff © # 2 a’ — A(k, Hg(z)) Return 1 zjj”;c Lo
and Hy(z) = Hi(2'). Return 1 iff Hi(x) = Hy(a').

and Hy(z) = Hi(z').
The probability is taken over all coin tosses of Kg and A.

Note that the value k specifying the hash function Hj from the hash family is called key, but usually the
key is not kept secret. There is an exception if we consider message authentication codes. In other words, a
family of hash functions does not fulfill the security properties mentioned above only due to the secrecy of
the key.

It is well known and straightforward to prove that any hash function which is collision resistant is also
second pre-image resistant. That is, when designing a family of hash functions, one should aim for collision
resistance and pre-image resistance.

Constructing hash functions is a hot topic. Specifically, it is desired to have hash functions whose design
is based on a difficult mathematical problem and thus whose security follows rigorous mathematical proofs
and formal reduction. Such functions are called provably secure hash functions and only a few examples of
them were proposed in literature like SWIFFT [21], VSH [13] and ECHO [11].

Error-correcting codes. A linear code of length n and rank k is a linear subspace C with dimension k
of the vector space Fy where Fy is the finite field with ¢ elements. The elements of Fy (resp. C) are called
words (resp. codewords). The Hamming weight of a word z, denoted by wt(x), is the number of its non-zero
entries. A parity check matrix H of C is defined by H - 27 = 0, Vz € C. In this paper, we take ¢ = 2.

Definition 2 (Regular word). A regular word of length n and weight w is a codeword consisting of w
blocks of length n/w, each has exactly one non-zero entry.
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Definition 3 (2-Regular word). A 2-regular word is defined as a sum of two reqular words. It is of length
n and weight less that equal to 2w.

The security of code-based cryptosystems is based on the hardness of several coding theory problems. The
most relevant in our context are stated in the following.

Definition 4 (Binary Syndrome Decoding (SD) problem). Given a binary s X n matriz H, a binary
vector y € Fy and an integer w > 0, find a word x € FY of weight wt(x) = w, such that H - 27 = y.

This problem is proven NP-complete in [3]. In [1] two further problems related to SD have been shown to
be NP-complete. They can be stated as follows.

Definition 5 (Regular Syndrome Decoding (RSD) problem). Given a binary s x n matriz H, a
binary vector y € F5 and an integer w > 0, find a regular word x € Fy, x # 0", of weight wt(z) = w, such
that H - 27 = y.

Definition 6 (2-Regular Null Syndrome Decoding (2-RNSD) problem). Given a binary sxn matriz
H and an integer w > 0, find a 2-regular word x € FY of weight < 2w, such that H - 27 = 0.

Throughout this paper, we will denote SD(n,s,w) and RSD(n,s,w) to indicate instances of the above
problems with parameters (n, s, w).

3 Related Works

In this section, we briefly provide a description of the main ingredients that we need to design our family of
hash functions: the FSB hash function [1] and the sponge construction [18].

FSB hash functions. The Fast Syndrome-Based Hash Functions (FSB) were first introduced in 2003 by
Daniel Augot et al. [1] and improved in 2007 [16]. The FSB follows the iterative Merkle-Damgérd design
principle [22,15] based on the compression function F defined by

F T — T,
x— Flx)=H - <pn7w(x)T,

where H is a random binary matrix of size r x n and the mapping = — ¢, ,,(x), called a regular encoder, is
an encoding algorithm, which takes an s-bit and returns a regular word of length n and weight w. In each
round, the input of the compression function F consists of s-bit string, which is a concatenation of r bits
taken from the output of the previous round and s — r bits taken from the message to be hashed. The use of
this encoder speeds up the computing of the vector-matrix multiplication, since this process is equivalent to
XORing w columns of length r from the matrix H. In order to obtain a smaller hash size the whirlpool-hash
function [2] is applied on the pre-final hash value.

Remark 1. Recently and just after finishing this work, we have come to know that a new construction based
on the FSB hash family due to Bernstein et al. [8] has been proposed. Their proposal seems to be more
efficient than the FSB SHA-3 proposal.

Sponge construction. This construction was presented by Bertoni et al. [18] in 2007. It represents a new
way to build hash functions from a random transformation/permutation, denoted by S, operating on states
of length s = r 4 ¢ bits. The parameter r is called the rate, ¢ the capacity, and s the width. The initial
state is initialized to zero. The first r (resp. the last ¢ bits) of a state is called the outer part (resp. the
inner part (or inner state)) of the construction. Let « denote the message to be hashed. After padding z,
the hashing process consists of two phases: the absorbing phase followed by the squeezing phase. During the
absorbing phase, only the outer part of the state is combined with a r-bit message block using the bitwise
XOR-operation. The result is then fed through S. After processing all blocks of  the squeezing phase follows.
In this phase only the outer parts are returned as intermediate hash values, interleaved with applications of
S. The number of hash blocks is chosen at will by the user.
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4 Our Construction: S-FSB

In this section, we present a variant of the FSB hash function, called Sponge Fast Syndrome-Based hash
function (in short S-FSB). We will use the same notations as in the previous section and define five positive
integers n, w ,s, r and ¢ such that the ratio n/w is a power of 2, and s = r 4+ ¢ = wlogy(n/w).

4.1 Description of S-FSB

The main idea behind our proposal is to use the sponge construction [18] of mode of operation rather than
the Merkle-Damgard mode [22,15] of operation used in FSB. The S-FSB is based on the FSB transformation
introduced in [19] to design the SYND stream cipher. This transformation, denoted here by 7, is defined by:

T:F5 — T
z—T(x)=H- wn,w(x)T,

Where H is a random binary matrix of size s x n and the mapping = — ¢, (2) is a regular encoding
algorithm as in FSB. For plugging this transformation into the sponge construction, we take s width, r the
rate, and ¢ the capacity (see section 3) such that s = r + ¢ (see section 3).

As illustrated in Figure 1, absorbing each r-bit message block m; is performed as follows. The block m; is
first combined with the outer part of the current state (the previous output of 7°) using the bitwise XOR
operation. The result is then encoded into a regular word y of length n and weight w by applying the regular
encoder ¢, ,,. Finally, the multiplication of y by the transpose of H (denoted HT) is performed to get the
next state. When all message blocks are processed, the construction switches to the squeezing step as in the
sponge construction to output the first r bits of the state as hash blocks. As in the sponge construction,
those blocks form the pre-final hash value, which are extracted to get the final hash value of length [.

my

$Pn,w

sS=r+c
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Fig. 1: Absorbing step of S-FSB hash function

The performance of our proposal depends directly on the number of bitwise XOR operations computed at
each round to treat the r bits of one message block. That is, one needs first » XORs for the bitwise addition
and then s XORs of w columns of the matrix H. This result to r 4+ sw binary XOR-operations. Since the
number of bits of each message block is 7, the number of expected binary XORs (denoted by N,,,) in average
for each message input bit is:

r+ (r+cw

Nxor(n7war7 C) = r

where r + ¢ = s = wlogy(n/w). This results to
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2]
J\/amr(ﬂqw,?"7 C) =1+ %(n/w)

This quantity is the main measure to estimate the theoretical performance of our proposal.

5 Security Analysis

In this section, we consider the security of S-FSB. We will show how the security of S-FSB is reduced to the
security of the syndrome decoding problem. More precisely, finding of pre-images (resp. collisions) is reduced
to regular syndrome decoding problem (resp. 2-regular null syndrome decoding problem). Furthermore, we
analyze the security in terms of current best known algorithms for solving these two problems.

5.1 Theoretical Security

In a cryptography environment, we require more properties of a hash function than just compressing the
input value into a short bit string. In particular, there are three basic security requirements that a cryp-
tographic hash function at least should fulfill. Namely, this is collision and (second) pre-image resistance.
These requirements are defined in Definition 1.

In order to analyze the security of sponge-based hash functions, we need to introduce the following definitions
to understand how generic attacks work against our proposal.

Definition 7 (Absorbing function). Let S be a sponge function. The absorbing function abs|-], takes as
input a padded message x of length multiple of r and returns the value of the state e obtained after absorbing
x, i.e. abs[z] =e.

Definition 8 (Path). Let S be a sponge function. An input x is called a path to the state e if abs[z] = e.

Definition 9 (Squeezing function). Let S be a sponge function. The squeezing function, denoted by sqz[-],
takes as input a state e given at the beginning of the squeezing step and returns an [-bit string Z; the output
truncated to l bits of S.

We will denote by e, the inner state of a state e. i.e. the last ¢ bits of state e.

Definition 10 (Output binding). Given an arbitrary string Z. Output binding is to find a state e such
that sqzle] = Z.

Definition 11 (State Collision). Let S be a sponge function. A state collision is a pair of two different
paths z,x' € F such that abs[z] = abs[z’].

Definition 12 (Inner Collision). Let S be a sponge function. An inner collision is a pair of two distinct
paths z,x' € F} resulting in the same inner part, i.e. abs[z]. = abs[z']..

It is easy to check that a state collision is an inner collision, since any two distinct paths z, 2’ € Fj such that
abs[z] = abs[z’] leads to abs[z]. = abs[z'].. However, the converse does not hold.

Notions for Security. In order to prove collision resistance of our proposed hash function family S-FSB,
we need to show that experiment Colﬁ from Definition 1 evaluates to 1 only with negligible probabil-

ity where H : {0,1}* — {0,1}! is the S-FSB hash family. Let Adv%i’i denote the maximum probabil-

ity over any PPT algorithm A to compute a collision as defined in experiment Col{()), i.c. Advgf’i =

max ppra{Prob | Colk (\) = 1]}.

(Second) Pre-image resistance is defined analogously denoted by Adv?jflmg (resp. Advj?f,iP "¢). Furthermore,

we reduce to security of our scheme to the syndrome problem (see Definition 4) which requires to specify
its hardness. We denote AdeD(n, s,w) the maximum probability over any PPT algorithm 4 to solve the
syndrome decoding problem with parameters (n,s,w).
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5.1.1 Collision Resistance. Security properties of hash functions build upon the sponge methodology
are scrutinized against generic attacks assuming random transformation S. In terms of collision resistance
the following statements are elaborated. An inner collision can easily (i.e. in polynomial time) transformed
into a state collision. Assume x,z’ are given inputs to a state collision, i.e. abs[z] = abs[z’]. Then choose
p € {0,1}* randomly and set m := z||p and m’ := 2/||p. Obviously, m, m’ lead to a collision in the output of
the hash function since sqz[abs[z||p]] = sqz[abs[z’||p]]. Therefore, shown in [18], assuming a random sponge
the workload of generating a collision in the output of the hash function is of the order min{2(¢+3)/2 2(+3)/2}
Due to space limitations, we give here a short intuition how the security proof for collision resistance works
and refer interested reader to the full version of this paper.

In order to produce collision for the S-FSB hash family where the sponge transformation is defined as
T: F35 - F5; o T(x) = H- ¢,u(x)T where H is a random binary matrix of size s x n, we require
to analyze the complexity of generating an inner collision. Since the capacity of a state is fixed (e.g. by
IV = 0) in the beginning of the absorption phase, it suffices for an adversary to find two r bit values m, m’
such that abs[m]. = abs[m/].. The complexity of generating collisions for transformation 7 is equivalent to
SD(n,s,2w), shown in the security proof of FSB [16]. At the same time, for an inner collision, one needs to
solve SD(n,, ¢, 2w,) where n = n, + n. and w = w, + w, are the corresponding columns of H and weights
of the input regular word belonging to the first = bits and the last ¢ bits, respectively.

This leads to the following proposition.

Proposition 1 (Collision Resistance). Let h be an S-FSB, . r.c) hash function scheme instantiated with
parameters (n,w,r,c) where n = n, + n. and w = w, +w.. Then, we have

Adv§9! < AdVEP (n,, ¢, 2w,.) + AdvOP (n, 5, 2w) 4 27 (c+3)/2 1 9= (1+3)/2,

h,(n,w,r,c)

Proof. Proof is given in the full version.

5.1.2 (Second) Pre-image Resistance Unfortunately, due to space limitations, we only provide our
results of (second) pre-image resistance and refer the reader to the full version of the paper for the corre-
sponding proof.

Proposition 2 ((Second) Pre-Image Resistance). Let h be an S-FSB(y, ) hash function scheme
instantiated with parameters (n,w,r,c) where n = n, + n,. and w = w, + w.. Then, we have

AdvETeIma < AP (n, e wy) + AdVEP (n, 1 w) + 270 427D

h,(n,w,r,c)

,and
Advieclre < m - (AdVIP (n,, ¢, wy) 4+ 272)

h,(n,w,r,.c)

where m is the path length of a given pre-image.

Proof. Proof is given in the full version.

5.2 Practical Security

In practice, to assess the security of our scheme regarding the collision and (second) preimage resistance, we
have to identify all known applicable attacks and to estimate the minimal complexities required to execute
these attacks. As far as we know, there exist three kind of attacks: Information Set Decoding (ISD), Gener-
alized Birthday Attack (GBA).

Information Set Decoding (ISD). ISD attacks are probabilistic algorithms for solving the SD problem.
The main idea behind an ISD attack to find a valid set (information set) of & = n—s (k is the dimension and
n the length of the code) positions among the n positions. This set is valid if the SD problem has a solution
whose support does not meet the chosen k positions. To check the validity of this set, one has to perform
the Gaussian elimination of an s X s submatrix of the parity check matrix H of size s x n, and thereby the
whole complexity of this algorithm is expressed as G(s)/P(n, s, w), where G(s) is the cost of the Gaussian
elimination and P(n, s, w) the probability to find a valid information set.
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Let P.(n,s,w) be the probability that a given information set is valid for one given solution of RSD. Let
denote by N,(n,s,w) the expected number of solution of RSD. As stated in [1], the probability P(n, s, w)
can approximated by P(n,s,w) = P.(n,s,w) x N.(n,s,w). Since there exist (%)w regular words, then the
average number of solutions of RSD is
()"

S

g3

Ny(n,s,w) =

[\

|3

(

one solution to RSD, on average. Furthermore, as shown in [1], the P,(n, s, w) is given by

Pons,w) = (2)" = (bgz(”/w))w

n njw

w
v

2y = 1. That means, we have only

In our setting, we have s = wlog 2(n/w). This results in N,.(n,s,w) =

—~
gl

If we set logy(n/w) = (3, for some integers (3, then the final probability of selecting a valid set to invert RSD
equals to:

w

P(n,s,w) = Pp(n,s,w) X Np.(n,s,w) = (26,6) with 3 = log,(n/w). (2)
To estimate the cost of finding collisions, we have to evaluate the complexity of solving the 2-RNSD problem
stated above. This can be done in the same way as in [1]. We compute the number of two-regulars words,
then we multiply it by the probability of the validity, to get the total probability of choosing a valid set.
This probability, denoted by Py, is given by:

Pi(n, s, w) = (%)w Klog2(;/w)> . 1]w

For simplicity, we can assume that § > 2. So, we get an upper bound for this probability, denoted by Pg,
which is equal to:

2N\
Po(n,s,w) = (25“ with (8 = log,(n/w). (3)
From the equation (3), we conclude that the probability for a random information set to be valid in case of

collisions search is larger by a factor (g)w compared to the probability for a random information set to be

valid in case of finding preimages, where 3 = logy(n/w).

In practice, there exists a lower bound for information set decoding attacks, presented in [6]. We will use
these bounds to estimate the security of our scheme.

Generalized Birthday Attack (GBA). The GBA algorithm is due to Wagner [25] and was introduced
to cryptanalyze the FSB hash function by Coron et al. [14].

We now describe the attack from Matthieu and Sendrier [17], which relies on the Generalized Birthday
Problem introduced by Wagner [25]. The basic idea behind this algorithm is, for a given integer «, to find a
set of indexes 7 = {1,2,---,2%} verifying

@Hizo.

To find this set Z, one has to compile 2% lists of 2571 elements containing distinct columns of the matrix H
of size s x m. These lists are then pairwise combined to get 2! lists of XORs of 2 columns of H. In the

resulting lists, only 2 columns starting with 37 zeros are kept, instead of all the possible columns. Then,
the new lists are pairwise merged to obtain 22 lists of XORs of 4 columns of H. Only 4 columns of H
starting with QQ_SH zeros, are kept. This process will be continued, until only two lists are left. These two

lists will contain 25 XORs of 2! columns of H having (o — l)aj_1 zeros at the beginning. After that,

the standard birthday algorithm can be applied to get one solution. Since all lists treated above, have the

same size %7, the complexity of GBA is at least in O (ail2a%1)).
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As we can see in this algorithm, the number of XORed columns was a power of 2. However, this does not
hold in general because the weight w can be any number. So if w is not a power of 2, one can modify the
above algorithm such that one can back in the general case of GBA by imposing the following condition on

a: 5= (24) > 27" (see [17] for more details). This condition can be rewritten as:
2

Zﬁw wral(a—
(2<1—a)w> SR W

where log,(n/w) = (3. In this case, one gets a lower bound of the cost of solving an instance SD problem
with parameters (n, s, w) as follows:
U)ﬂ wp -1
— —1) 2% " 5
(22-1) )

As we can see, for fixed weight w, this complexity is an increasing function in n. So, to avoid the GBA
attack, we have to choose large n.

Remarks:

— In [5] an implementation of GBA is presented against the compression function of FSB. This imple-
mentation includes two techniques introduced in [4] in order to mount GBA on computers, which do
not have enough storage capacity to hold all list entries. However, the complexity of this attack is still
exponential. Since our scheme is based on the FSB compression function, we claim that our proposal is
secure against this implementation.

— It was shown in [20] that the sponge-based hash functions can be attacked by slide attacks. This kind of
attacks was introduced in [10] by Biryukov et.al for cryptanalyzing iterative block ciphers. For attacking
a sponge-like construction, the self-similarity issue can be exploited, meaning that all the blank rounds
behave identically. As noted in [20], a simple defense against slide attacks consists in adding nonzero
constant just before running the blank rounds. This can be achieved by a convenient padding such that
the last block of the message is different from null vector. That is exactly, what we are used in our
construction. Therefore, our proposal is secure against slide attacks.

— In [24], the so-called linearization attack (LA) was proposed against FSB to find collisions. The key idea
is to reduce the problem of finding collisions to a linear algebra problem that can be solved in polynomial
time, when the ratio s/w is up to 2. Furthermore, as shown in [24], this attack can still be applied if
s > w. It can be extended even to s > 2w with complexity O(s? (%)S_Qw). So, to avoid the LA attack,
we have to choose s > 2w.

— Most recently a new variant of ISD algorithm [7] was presented for estimating the hardness of the 2-
Regular Null Syndrome Decoding problem (2-RNSD). This algorithm runs faster than the lower bounds
given in [17]. The parameters we propose in the next section are chosen to resist this attack as well.

6 Proposed Parameters

When selecting parameters for S-FSB, we have to look for parameters providing the desired security with
least processing cost required to hash one bit of the message. As mentioned in Section 4, this cost can be
measured using formula (1), which is expressed as a function depending on the parameters set (n,w,r,c).
This function is defined by

w? logy (n/w)
r

w(r + ¢)

Naor(n,w,rc) =1+ ,

1+ o1y =1+w(1+5) (6)
r r

We observe that for increasing values of ¢, this function is an implicitly increasing quantity in w and n.

So, if we want to have a good performance, then we have to choose small values of ¢ (as small as possible)

and select w and n such that the value of r are large. But from security point of view, we should choose s

greater than 2w+ 1 to withstand the linearization attack mentioned earlier. Furthermore, to avoid inner and

outer collisions, the running time of solving instances of RSD and 2-RNSD with parameters (n, s, w) and

(nr, ¢, w,) according the best known collision attack, must be larger than the desired security.
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Starting from those conditions, we propose three parameter sets (n,s,w,c) that provide different security
levels. Those sets of parameters are presented in Table 1 together with the corresponding numbers of XORs
and the complexities of the ISD and GBA attack.

Preimage Collision
Hash size n s w ¢ Ngyor GBA ISD GBA ISD

160 3.9219 38424240 64.0 2130 299 9286 991
224 17 - 217 544 34 336 88.9 2150 9144 9114 9122
256 39217 624 39 296 90.5 2246 2172 9129 9148

Table 1: Proposed paramaters for S-FSB

7 Performance Evaluation

S-FSB has been implemented on a 2.53 GHz Pentium Core2 Duo, running Linux (Ubuntu 10.04) 32 Bit
with 6MB of cache and 4GB of RAM. The C compiler is GCC, version 4.4.3 with -O3 optimization. In our
implementation, we used truncated quasi-cyclic codes as in FSB. We propose three versions of S-FSB of hash
size 160, 224, and 256 bits. The performance of these versions is reported in Table 2. This performance was
measured on a message of size 1000 MB. The file hash time in the third row was measured by repeated calls
to the clock() function to get the current millisecond clock value and subtracted the stop time from the
start time. The number of samples we performed is about one million. To get the speed expressed in cycles
per bytes, we multiplied the measured hash time by the CPU frequency and divided the result by the file
size in bytes.

Hash size (bits) File size (MB) File hash time (s) Speed (cpb)

160 1000 66.90 ~ 160
224 1000 84.48 ~ 201
256 1000 75.63 ~ 183

Table 2: Performance of S-FSB on a 2.53 GHz Core2 Duo processor.

In order to compare our results with those of FSB SHA-3 proposal®, we ran the C-code of FSB on the same
desktop and we obtained the results presented in Table 3. As we can see, the S-FSB is more efficient than
FSB by a factor of 1.44 (30%). Despite this improvement, the S-FSB hash function remains slower than the
existing hash functions like the SHA-2 family.
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