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Abstract 
 

Rough set theory is a relative new tool that deals with vagueness and uncertainty inherent 

in decision making. This paper introduce a new probabilistic approach for reducing 

dimensions and extracting rules of information systems using expert systems. The core of the 

approach is a soft hybrid induction system called the Generalized Distribution Table and 

Rough Set System (GDT-RS) for discovering classification rules, Which is based on a 

combination of Generalized Distribution Table (GDT) and the Rough Set methodologies. The 

probabilistic properties of the Decision rules are discussed and the proposed probabilistic 

rough set approach was applied to discover grade rules of transformer evaluation when there 

is a missing failure symptom of transformer. The results show that the proposed approach 

represents explicitly the uncertainty of a rule, it can flexibly select biases for search control 

and it can effectively handle noisy and missing data.  
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1.  Introduction 
 

Classical rough set theory developed by Professor Z. Pawlak in 1982 has made a 

great success in knowledge acquisition in recent years [1]. In Rough set theory, 

knowledge is represented in information systems. An information system is a data set 

represented in a table, this table is called decision table [2]. Each row in the table 

represents an object, for example a case or an event. Each column in the table 

represents an attribute, for instance a variable, an observation or a property. To each 

object (row) there are assigned some attribute values.  

One of the disadvantages of rough set theory is its dependence on complete 

information systems i.e., A decision table to be processed must be complete and its all 

objects values must be known [3]. But in real-life applications, Due to measurement 

errors, miscomprehension, access limitation and misoperation in register, etc, 

information systems with missing values often occur in knowledge acquisition. 

Information systems with missing data, or, in different words, the corresponding 

decision tables are incompletely specified, is called incomplete information systems [4]. 

For simplicity, incompletely specified decision tables will be called incomplete 

decision tables. 

The core of the proposed approach is a soft hybrid induction system called the 

Generalized Distribution Table and Rough Set System (GDT-RS) for discovering 

classification rules. The system is based on a combination of Generalized Distribution 

Table (GDT) and the Rough Set methodologies. 
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2.  Rough Set and Missing Attribute Values 
 

Missing attribute values commonly exist in real world data set. They may come 

from the data collecting process or redundant diagnose tests, unknown data and so on. 

Since the main concern is learning from examples, and an example with a missing 

decision value, (i.e., not classified) is useless [5], we will assume that only attribute 

values may be missing. Discarding all data containing the missing attribute values 

cannot fully preserve the characteristics of the original data. So In data analysis two 

main strategies are used to deal with missing attribute values in data tables.  

 The former strategy is based on conversion of incomplete data sets (i.e., data sets 

with missing attribute values) into complete data sets and then acquiring knowledge. 

The process to change the incomplete data set into complete data set, say to transform 

the missing data into specified data via some technique, is called completeness of data 

set. Multiple approaches on filling in the missing attribute values were introduced 

[6],[7], such as selecting the “most common attribute value”, the “concept most 

common attribute value”, “assigning all possible values of the attribute restricted to the 

given concept”, “ignoring examples with unknown attribute values”, “treating missing 

attribute values as special values”, “event covering method” and so on. In this strategy 

conversion of incomplete data sets to complete data sets is a preprocessing to the main 

process of data mining. 

 In the later strategy, knowledge is acquired from incomplete data sets taking into 

account that some attribute values are missing. The original data sets are not con verted 

into complete data sets. The later strategy is exemplified by the C4.5 approach to 

missing attribute values [8] or by a modified LEM2 algorithm [9, 10]. In both 

algorithms original data sets with missing attribute values are not preprocessed.  

This paper will concentrate on the later strategy used for rule induction, i.e., it will 

be assumed that the rule sets are induced from the original data sets, with missing 

attribute values, not preprocessed as in the former strategy. 

The next basic assumption is that there are three approaches to missing attribute 

values [11]: 

The first approach is that an attribute value, for a specific case, is lost. For 

example, originally the attribute value was known; however, due to a variety of reasons, 

currently the value is not available. Maybe it was recorded but later it was erased.  

The second approach is that an attribute value was not relevant , the case was 

decided to be a member of some concept, i.e., was classified, or diagnosed, in spite of 

the fact that some attribute values were not known. For example, it was feasible to 

diagnose a patient in spite of the fact that some test results were not taken (here 

attributes correspond to tests, so attribute values are test results). Since such missing 

attribute values do not matter for the final outcome, we will call them "do not care" 

conditions. 

The third approach is a partial "do not care" condition; we assume that the missing 

attribute value belongs to the set of typical attribute values for all cases from the same 

concept. Such a missing attribute value will be called an attribute -concept value. 

Calling it concept "do not care" condition would be perhaps better, but this name is too 

long 

In the sequel it is assumed that all decision values are specified. Also, all missing 

attribute values are denoted either by "?" or by "*", or by "-", lost values will be 

denoted by "?", "do not care" conditions will be denoted by "*", and attribute -concept 

value will be denoted by "-". Additionally, it is assume that for each case at least one 
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attribute value is specified. An example of an incompletely specified table is presented 

in Table 1. 
 

Table 1: An incompletely Specified Decision Table 
 

 Attributes Decision 

transformer Valid utilization degree Maintenance cost Reliability Grade 

1 1a
 1b

 1c
 II 

2 - 0b
 0c

 I 

3 1a
 0b

 1c
 II 

4 1a
 0b

 * I 

5 0a
 0b

 0c
 II 

6 0a
 ? - II 

7 1a
 ? 1c

 II 

8 1a
 1b

 0c
 I 

 

Obviously, in rough set theory any decision table defines a function ρ that maps the 

set of ordered pairs (case, attribute) into the set of all values [12]. For example, in 

Table 1, ρ (1, Valid utilization degree) = 1a  

Rough set theory is based on the idea of an indiscernibility relation [13]. The 

indiscernibility relation IND(B) is an equivalence relation. Equivalence classes of 

IND(B) are called elementary sets of B and are denoted by [x]B.  

The indiscernibility relation IND(B) may be computed using the idea of blocks of 

attribute-value pairs. Let a be an attribute and let v be a value of a for some case. For 

complete decision tables if t = (a, v) is an attribute-value pair then a block of t, denoted 

[t], is a set of all cases from U that for attribute a have value v. 

For incomplete decision tables the definition of a block of an attribute-value pair 

must be modified as follow: 

 If for an attribute a there exists a case x such that ρ(x, a) = ?, i.e., the 

corresponding value is lost, then the case x should not be included in any block   

[( a, v )]  for all values v of attribute a. 

 If for an attribute a there exists a case x such that the corresponding value is a 

"do not care" condition, i.e., ρ (x, a) = *, then the corresponding case x should 

be included in blocks [(a, v)] for all specified values v of attribute a. 

 If for an attribute a there exists a case x such that the corresponding value is a 

attribute-concept value, i.e., ρ (x, a) = –, then the corresponding case x should 

be included in blocks [(a, v)] for all specified values v of attribute a that are 

members of the set V(x, a), where  

V(x, a) = { ρ (y, a) | y   U , ρ (y, d) = ρ (x, d)},    and d is the decision. 

Thus, For Table 1, 

[(Valid utilization degree, 1a
)] = {1, 2, 3, 4, 7, 8}, 

[(Valid utilization degree, 0a
)] = {5, 6}, 

[(Maintenance cost, 1b
)] = {1, 8},                                                        (1) 

[(Maintenance cost, 0b
)] = {2, 3, 4, 5}, 



International Journal of Advanced Science and Technology 

Vol. 30, May, 2011 

 

 

28 

[(Reliability, 1c )] = {1, 3, 4, 6, 7}, 

[(Reliability, 0c )] = {2, 4, 5, 6}. 

These modifications of the definition of the block of attribute-value pair are 

consistent with the interpretation of missing attribute values [11] lost, "do not care" 

conditions, and attribute-concept values. Also, note that the attribute-concept value is 

the most universal, since if V(x, a) = Ø , the definition of the attribute-concept value is 

reduced to the lost value, and if V(x, a) is the set of all values of an attribute a, the 

attribute-concept value becomes a "do not care" condition. 
 

3.  Generalized Distribution Table 
 

Generalized Distribution Table (GDT) is a table in which the probabilistic 

relationships between concepts and instances over discrete domains are represented 

[14], [15]. Any GDT consists of three components: possible instances, possible 

generalizations of instances, and probabilistic relationships between possible instances 

and possible generalizations. 

The possible instances, which are represented at the top row of GDT, are defined 

by all possible combinations of attribute values from a database, and the number of the 

possible instances is 

                              
1

m
ni

i



                                                                                (2) 

Where m is the number of attributes, n is the number of different data values in each 

attribute. 

The possible generalizations for instances, which are represented by the left 

column of a GDT, are all possible cases of generalization for all possible instances, and 

the number of the possible generalizations is 

                                1      1 
1 1

m m
n ni i

i i

   
      

    
                                      (3) 

 A wild card ` * ' denotes the generalization for instances,  For simplicity, the wild 

card will sometimes be omitted in the paper. For example, the generalization a 0 * c0 

means that the attribute b is superfluous (irrelevant) for the concept description. In 

other words, if an attribute b takes values from {b0 , b1 } and both a0b0c0 and a0b1c0 

describe the same concept, the attribute b is superfluous, i.e. the concept can be 

described by a0c0 . Therefore, the generalization a0*c0  used to describe the set {a0 b0 c0, 

a0 b1 c0 } 

The probabilistic relationships between possible instances and possible 

generalizations, represented by entries Gij of a given GDT, are defined by means of a 

probabilistic distribution describing the strength of the relationship between every 

possible instance and every possible generalization. The prior distribution is assumed to 

be uniform if background knowledge is not available. Thus, it is defined by 

 



International Journal of Advanced Science and Technology 

Vol. 30, May, 2011 

 

 

29 

  

 (4) 

 

 

 

where 

            jPI
 is the j th possible instance,  

           
PG

i  is the ith possible generalization,  

and   is the number of the possible instances satisfying the ith  possible 

generalization , that is , 

                                                  (5) 

 

where    j = 1,. . . , m, and j # the attribute that is contained by the ith possible 

generalization (i.e., j just contains the attributes expressed by the wild card ) .  

Rule Strength 

In this approach, the rules are expressed in the following form:    Y   with    SX     

That is, “if X then Y with strength S”.  Where 

X: denotes the conjunction of the conditions that a concept must satisfy,  

Y: denotes a concept that the rule describes,   and   

S: is a “measure of strength” of which the rule holds.  

The strength of a given rule reflects the incompleteness and uncertainty in the 

process of rule inducing influenced by both unseen instances and noise. It is defined by  

                         (6) 

where s( X ) : The strength of the generalization X  and r : noise rate function .  

s( X ) : The strength of the generalization X (i.e., the condition of the rule) it 

represents explicitly the prediction for unseen instances. It is given by Eq. (7). 

                                  (7)  

 

Where     is the number of the observed instances satisfying the i
th

 

generalization. 

r : noise rate function  

 It shows the quality of classification measured by the number of the instances 

satisfying the generalization X which cannot be classified into class Y. The user can 

specify an allowed noise level as a threshold value. Thus, the rule candidates with a 

noise level larger than the given threshold value will be deleted. It is defined by ,  
 

( \ )

1
     if  is a generalization of   

     

   0         otherwise

G p PI PGij j i

PG PIi jN
PG

i



 
 

  
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N
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m

N n
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i j

 

   ( ) . 1-S X Y s X r X Y    
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N
i
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s PG p PI PG 
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                                                       (8) 

  

where  

( )ins relN x   is the number of the observed instances satisfying the generalization X ,  

( , )ins classN X Y  is the number of the instances belonging to the class Y within the 

instances satisfying the generalization X . 

From the GDT, we can see that a generalization is 100% true if and only if all of 

instances belonging to this generalization appear. Let us use the example shown in 

Table 1. Considering the generalization {b0 , c1}, if instances both {a0 b0 c1} and { a1 b0 

c1} appear, the strength s({b0 , c1}) is 1; if only one of { a0 b0 c1} and { a1 b0 c1}  

appears, the strength s( {b0 c1}) is 0.5, as shown in Figure 1.  
 

 

 

 

Fig. 1. Probability of a Generalization Rule 
 

It is obvious that one instance can be expressed by several possible generalizations, 

and several instances can be also expressed by one possible generalization. For the 

example shown in Table  1, the instance {a  b0  c1} can be expressed by {a1 b0},              

{b0 c1}……., or { c1}. 

Every generalization in upper levels contains all generalizations related to it in lower 

levels. That is, 

      {a1}       {a1 b0} , { a1 c1} , 

  {a1 b0}       { a1 b0 c1} 

In other words, if the rule {a1} → y is true, the rule {a1 b0} → y and { a1 c1} → y are 

also true. Otherwise, if {a1 b0} → y or { a1 c1} → y is false, the rule {a1} → y is also 

false. Figure 2 gives the relationship among generalizations. 

 

 

 

 

 

 

Fig. 2  The Relationship Among Generalizations 
 

A generalization that contains the instances with different classes is contradictory, 

and it cannot be used as a rule. In contrast, a generalization that contains the instances 

with the same class is consistent, so From Table 1, we can see that the generalizations 

b0c1 

a1b0c1 

a0b0c1 

0.5 

0.5 

a1 
b0 

a1b0c1 

a1b0c0 

 

0.5 

0.5 

a1 c1 b0 

a1b0c1 

a1b0 a1c1 b0c1 

 
( ) ( , )

( )
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ins rel

N X N X Y
r X Y

N X

 




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can be divided into three groups: contradictory, belonging to class y, and belonging to 

class n. 
 

4.  Searching Algorithm for an Optimal Set of Rules 
 

We now outline the idea of a searching algorithm for a set of rules based on the 

GDT-RS methodology. a sample decision table shown in Table 1  is used to illustrate 

the idea.  

Algorithm  

Step 1. Create the GDT. 

Since : 

 

 

 

Hence : 

the number of attributes ( m ) = 3  ,  

from Eq.(2) number of the possible instances is  8 , 

from Eq.(3) number of the possible generalizations is  18  , 

Step 2 . simplify the GDT. 
 

By deleting all of the instances and generalizations un-appeared in the example 

database shown in Table 1: 

From table 1 The instances appeared with respect to cases 1, 3, 5, 8 are  1 1 1a ,b c  

     1 0 1 0 0 0 1 1 0a , a , ab c b c b c
, respectively.  

From Eq. ( 1 ) and table 1  the instance appeared with respect to case 2  is  1 0 0a b c  ; 

From Eq. ( 1 ) and table 1  the instance appeared with respect to case 4  may be one 

of  
    1 0 0 1 0 1,a b c a b c

 ; 

 

From table 1,  the instance appeared with respect to case 6  may be one of  

 
        0 0 0 0 0 1 0 1 0 0 1 1, , ,a b c a b c a b c a b c

  
 

Similarly, the instance appeared with respect to case 7 may be one of 

  
    1 0 1 1 1 1,a b c a b c

 but 
 1 0 1a b c

 is not consistent with table. 2 . so the appeared 

instance is  1 1 1a b c  . 

So the simplified GDT is shown in table 2  

 

over-current protection action  { a  , a  }      n 2
0 1 1

Exceeding of winding insulation resistance  { b  , b   }          n 2
0 1 2

Unbalance of three-phase winding direct current resistance  { c   ,  c   
0 1

  

  

 }         n 2
3

 
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Table 2: The Simplified GDT for the Decision Table Shown in Table 1 
(Note the elements that are not displayed are all zero) 

 

 a0 b0 c0 a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1 

* b0 c0 1/2    1/2    

* b0 c1  1/2    1/2   

* b1 c0   1/2    1/2  

* b1 c1    1/2    1/2 

a0 * c0 1/2  1/2      

a0 * c1  1/2  1/2     

a1 * c0     1/2  1/2  

a1 * c1      1/2  1/2 

a0 b0 * 1/2 1/2       

a0 b1 *   1/2 1/2     

a1 b0 *     1/2 1/2   

a1 b1 *       1/2 1/2 

* * c0 1/4  1/4  1/4  1/4  

* * c1  1/4  1/4  1/4  1/4 

a0 * * 1/4 1/4 1/4 1/4     

a1 * *     1/4 1/4 1/4 1/4 

* b0 * 1/4 1/4   1/4 1/4   

* b1 *   1/4 1/4   1/4 1/4 

 

Step 3 . Group the Generalizations 

 Generalizations can be divided into three groups contradictory, belonging to class 

yes, and belonging to class no. The contradictory generalizations, containing the 

instances belonging to different decision classes, cannot be used as the rules. Hence 

they are ignored. In other words, we are just interested in the generalizations belonging 

to class yes or no, which will be selected as the rules. 
 

Table 3. The  Generalizations Belonging to Class Yes 
 

 a1 b0 c0 a0 b1 c0 a1 b1 c1 

a1 * c0 1/2 1/2  

a1 b1 *  1/2 1/2  
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Table 4. The  Generalizations Belonging to Class No 
 

 a0 b0 c0 a0 b0 c1 a0 b1 c0 a0 b1 c1 

a0 * c0 1/2  1/2  

a0 * c1  1/2  1/2 

a0 b0 * 1/2 1/2   

a0 b1 *   1/2 1/2  

a * * 1/4  1/4 1/4 1/4 

 

Step 4. Rule Selection  

There are several possible ways for rule selection. For example :  

 Selecting the rules that contain as many instances as possible.  

 Selecting the rules in the levels of generalization as high as possible 

according to the number of  “ * “ in a generalization . 

 Selecting the rules with larger strengths. 

Since the purpose is to simplify the decision table and simpler results of 

generalization (i.e., more general rules) are preferred, the first priority will be to the 

rules that contains more instances, then to the rules corresponding to an upper level of 

generalization. and the third priority to The rules with larger strengths .  

Thus, from table 3 and table 4 the final rule set is  

 

 

 

1

1 1

0

 ,  with S 1

 ,  with S 1

     ,  with S 1

oa c yes

a b yes

a no

 

 

 
 

Results  

The induced Rules can be written as: 

 If (Valid utilization degree, 1a
 ) and (Maintenance cost, , not appearing) then 

(Grade, II) 

 If (Valid utilization degree, 1a
 ) and (Maintenance cost, 1b

) then (Grade, II) 

 If (Valid utilization degree, not appearing) then (Grade, I) 

 

5.  Conclusions 
 

 Rough set theory and statistics are related to analyze the data from the rough 

set perspective. 

 Three approaches to missing attribute values are presented in a unif ied way. 

It is shown that all three approaches to missing attribute values may be 

described using the same idea of attribute-value blocks. 

 An approach of rule discovery based on Rough Sets and Generalization 

Distribution Table was presented. The basic concepts and an implementation 

of the methodology was described. Main features of that methodology can 

be summarized as follows: 

 It can discover If-Then rules from very large, complex databases . 
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 It represents explicitly the uncertainty of a rule including the 

prediction of possible instances in the strength of the rule. 

 Lost values are considered during the process of rule induction .  

 It can flexibly select biases for search control. 

 It can effectively handle noisy data, missing data  
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