
International Journal of Advanced Science and Technology

Vol.121 (2018), pp.1-20

 http://dx.doi.org/10.14257/ijast.2018.121.01

ISSN: 2005-4238 IJAST

Copyright ⓒ 2018 SERSC Australia

Lookback-Guess-Next Optimizer: Feedback-Guided Random

Search Technique with Biased Mapping for Solving

Unconstrained Optimization Problems
1

Muhammed Jassem Al-Muhammed

Faculty of Information Technology, American University of Madaba,

Madaba, Jordan

m.almuhammed@aum.edu.jo

Abstract

Finding global optima for functions is a very important problem. Although a large

number of methods have been proposed for solving this problem, more effective and

efficient methods are greatly required. This paper proposes an innovative method that

combines different effective techniques for speeding up the convergence to the solution

and greatly improving its precision. In particular, the method uses feedback-guided

random search technique to identify the promising regions of the domains and uses the

biased mapping technique to focus the search on these promising regions, without

ignoring the other regions of the domains. Therefore, at any point of time, the domain of

each variable is entirely covered with much more emphasis on the promising regions.

Experiments with our prototype implementation showed that our method is efficient,

effective, and outperformed the state-of-art techniques.

Keywords: Optimization problem; biased mapping; global optima; effective search

regions; local optima

1. Introduction

Most of the real world problems lend themselves to functions optimization.

Unfortunately, most of these functions are difficult to optimize using direct mathematical

means because they are non-differentiable, have no derivatives, not continuous, and have

multiple local optima. Researchers have proposed different methods to tackle these

problems. These methods adopt different techniques to speed up the search and improve

the precision of the solution (minimum or maximum). The major techniques include

evolutionary algorithms (such as [14, 15, 16, 20, 21, 25, 27, 28]) and swarm intelligence

algorithms (such as [814, 1720, 30]). Other methods use direct mathematical methods

(such as [22]).

In order for the solution method to be effective, it must possess several properties.

First, it must be able to find the exact global optimum or at least a so-close approximation

to it. That is, it must avoid being caught in local optima. Second, in order to be practical,

it must require a minimal amount of resources (especially CPU time). Third, it must be

general and not tailored to any specific set of problems. Forth, it must be easy to

implement.

This paper proposes a feedback-guided random search method augmented with biased

mapping technique. We call our method ANT-BM. 2 This method is based on three

effective techniques: lookback capability technique, biased mapping technique, and auto-

adjusting technique. The lookback technique enables the method to use the intermediate

search results from previous search round as a feedback for identifying the promising

Received (July 25, 2018), Review Result (September 6, 2018), Accepted (September 22, 2018)
2ANT-BM: lookbAck-guess-Next opTimizer: … with Biased Mapping…

International Journal of Advanced Science and Technology

Vol.121 (2018)

2 Copyright ⓒ 2018 SERSC Australia

regions for the next search round. (The promising regions are those in which the solution

is highly expected.) The biased mapping technique enables the method to dynamically

condense the search in the promising regions of the domains. In other words, it redirects

more randomly generated candidate solutions to these promising regions. The auto-

adjusting technique uses the feedback to automatically adjust the method’s search

parameters. In particular, the auto-adjusting technique utilizes the feedback to

dynamically move the focus of the search to the promising regions. These techniques are

augmented with the ability to dynamically reduce the size of the promising regions. The

latter property (reduction of the promising regions) causes the search to concentrate on

continuously narrowing promising regions, which results in thoroughly searching these

regions and speeding up the convergence to the solution.

The paper makes the following contributions. First, it proposes a highly effective and

efficient (time/space wise) method for finding the optima for n-dimensional functions.

Second, it defines biasing coefficients and effective mapping techniques that enable

focusing the search on the parts of a domain where the solution is likely to reside without

ignoring the other parts of the domain. Third, the method provides techniques for

dynamically turning the focus of the search to parts of the domains using feedbacks

collected during the search.

We present our contributions as follows. Section 2 introduces some basic

terminologies. Section 3 discusses the biased mapping technique. Section 4 presents the

stopping conditions and Section 5 presents the algorithmic details of the proposed

method. We present our comprehensive analysis for the performance of our method in

Section 6. We conclude and give directions for future work in Section 7.

2. Terminologies

Let f (x1, x2, …, xn) be an n-dimensional function and [Ai, Bi] be bounded domains of

the variables xi (i=1, 2, …, n). Optimizing a function f means finding an n-dimensional

point X*(x1*, x2*, …, xn*) from the domains of the variables such that the function f is in

its optimal value (minimum or maximum). We call the point X*(x1*, x2*, …, xn*) the best

global point for the function f. We also call each value xi* the best substitution for the

variable xi. We in addition call the part of the domain in which the best substitution is

highly expected the effective search region or promising region.

3. The Biased Mapping Technique

We introduce in this section the biased mapping technique. We first define the biasing

coefficients in subsection 3.1. We then use these biasing coefficients to define our biased

mapping in subsection 3.2.

3.1. The Biasing Coefficients

Let [Ai, Bi] be a bounded domain of a variable xi and i be the center of this domain.

Our proposed algorithm splits the domain of each variable xi into an effective search

region and two marginal search regions. The three regions entirely cover the domain of

each variable. Figure 1 shows a bonded domain [Ai, Bi] and the three regions. The

effective search regions are designated as effective crawlers. The marginal search regions

are designated as left region and right region.3 The effective crawler, which is centered at

some point Ci  [Ai, Bi] and whose radius is ri, covers the region of the domain in which

the best substitution xi* is highly expected. (That is why we call this region effective

search region.) The effective crawler provides the method with an effective mechanism to

3 We designate the effective search region as effective crawler because this region crawls over the

interval during the search for the best point for a function f.

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 3

focus most of the search on the promising regions. The left and right regions cover the

other parts of the domain in which the best substitution may exist (but not very expected).

These two marginal regions serve as a guard to avoid missing the best substitution if this

substitution is not really within the region covered by the effective crawler.

Figure 1 also shows a random number generator that produces uniformly distributed

random numbers within the range (Bi – Ai). This generator provides the technique with

random numbers that serve as raw substitutions for f. (As we discuss next, raw

substitutions need further processing before they can be used in the function.)

Since the best point is highly expected in the effective regions, we must ensure a

comprehensive search for these regions without of course ignoring the marginal regions.

We must therefore redirect (or map) most of the random numbers to the effective regions.

This idea is illustrated in Figure 1, where a large number of the random numbers

generated in the range "BiAi" (thick line) is redirected to the region of the effective

crawler using the biased mapping technique, which will be discussed in great details in

the next subsection.

Figure 1. The Effective Crawler and the Right/Left Marginal Regions

To focus the search on the effective search regions, we define the following two

values, Fi
bias and Gi

bias, which we call the biasing coefficients.

 i

ibias

i
r

r
F

2

|| 




 …….. (1)

ii

ibias

i
rD

r
G

2

||








Where   ,  +  =Di, Di = Bi – Ai, and ri is the radius of the effective search region.

The values  and  are the initial weigh that is given to respectively the effective and

marginal search regions.

Based on the biasing coefficients, we define the values Ei, Li, Ri, which we call the

amounts of the bias.

bias

iiiii

bias

iiiii

bias

iii

GrCBR

GArCL

FrE

)(

)(

2







Ai []Bi

Ci ri

Effective crawler Right region Left region

Biased

Mapping

Random Generator:
“Generates random numbers within the range (Bi Ai)”

x
i

Ai []Bi

……… (2)

International Journal of Advanced Science and Technology

Vol.121 (2018)

4 Copyright ⓒ 2018 SERSC Australia

Ei is the amount of the bias to the effective crawler region. It determines the number of

the random numbers, which are mapped to the effective search region. For instance, if the

range of the random numbers is 10 and Ei = 6, then roughly 60% of the randomly

generated numbers within this range will be mapped to the effective crawler and the other

40% will be mapped to the marginal regions. The values Li and Ri determine the number

of the random numbers that are mapped to the left and right regions respectively. The

main goal of the Li and Ri is to ensure that no portion of a variable’s domain is left

unsearched. According to the definition of 𝐹𝑖
𝑏𝑖𝑎𝑠 and 𝐺𝑖

𝑏𝑖𝑎𝑠, at least a range of size  of

the domain is redirected to the effective crawler and at most a range of size  of the

domain is redirected to both Li and Ri.4

Additionally, since both Fi
bias and Gi

bias depend on the radius of the effective crawler ri,

the amounts of bias Ei, Ri, and Li vary as the radius ri changes. That is, they dynamically

increase or decrease during the search as ri changes (decreases or increases).

The effective crawler can move to any point within a variable's domain by moving its

center Ci. In addition, crawlers on different domains can be in different positions and have

different radiuses. That is, the position and radius of each crawler has no relation to the

position and radius of the crawlers on the other domains and only depend on the

intermediate results of the search.

Before concluding this subsection, we point out two important properties of our

technique. First, the ability of moving the effective crawler to different parts of a

variable’s domain allows our algorithm to dynamically shift the search focus to any part

of this domain in which the solution is highly expected. Second, the ability of biasing

more random points to a specific part of a variable’s domain ensures a comprehensive

search for this part without ignoring the other parts of the domain. Both properties ensure

not only a full coverage and exhaustive search for the entire domain, but also escape

being trapped in local optima because the search is not restricted to only specific regions

of a domain (it actually always covers the entire domain although more focus is dedicated

to the effective regions).

3.2. The Biased Mapping

The biased mapping plays a vital role in the proposed technique. It largely biases the

search toward the effective regions. Its major role is to redirect (map) more randomly

generated numbers (or raw substitutions) to a specific region of a variable’s domain. In

particular, we require our biased mapping to use the amounts of bias (defined in equation

2) as a criterion and redirect more random numbers to the effective search region than to

the other two regions. (Recall that the effective search region is more promising.)

Let i be the center of the bounded domain [Ai, Bi] of the variable xi and Ci be the

center of the region covered by the effective crawler for i =1, 2, …, n. Figure 3 shows our

proposed biased mapping.

Generally speaking, the biased mapping redirects a raw random number xi
rnd to only

one of the three regions based on the amounts of bias Ei, Li, and Ri. Therefore, in lines 2

through 6 (similarly lines 8 through 12), we compare the raw random number xi
rnd to the

amount of bias and redirect it (xi
rnd) to any of their respective regions only if xi

rnd is less

than the corresponding amount of bias. If xi
rnd is less than Ri (line 2), line 3 redirects xi

rnd

to the right region (since Ri is the amount of bias to the right region). If, however, xi
rnd is

less than Li+ Ri (line 4), line 5 redirects xi
rnd to the left region. If none of the conditions is

true, line 6 redirects xi
rnd to effective search region.

It is clear that if the random generator is fair (uniformly covers the domain [Ai, Bi]),

more random numbers will be redirected to the effective search region. That is because

the amount of bias to the effective search region Ei is always greater than the total amount

of bias to both the left and right regions Li+Ri. Additionally, although less focus on the

4 We can show with a simple math that Ei + Li + Ri = Di.

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 5

left and right regions, they are nevertheless still covered by random numbers since their

respective amounts of bias Li and Ri are never zero.

The comparison between Ci and i in line 1 (and implicitly in line 7) is to correctly

map between the right and left regions. For instance, if Ci is greater than i, the right

region is smaller than the left region. Therefore, we first try to map the raw random

number to right region (the smaller) before considering mapping it to the left region (the

lager).

1. IF Ci > i THEN

2. IF
rnd

ix < Ri THEN

3. xi
new = iibias

i

rnd

i rC
G

x


4. ELSE IF
rnd

ix < Ri + Li THEN

5. xi
new = ibias

i

i

rnd

i A
G

Rx




6

 ELSE /* (Li+Ri)< xi
rnd  Ei */

 xi
new = iibias

i

ii

rnd

i rC
F

LRx




7 ELSE

8 IF
rnd

ix < Li THEN

9 xi
new = iibias

i

rnd

i rC
G

x


10 ELSE IF
rnd

ix < Ri + Li THEN

11 xi
new = ibias

i

i

rnd

i A
G

Lx




12

 ELSE

 xi
new = iibias

i

ii

rnd

i rC
F

LRx




Figure 3. The Biased Mapping

4. Stopping Conditions

Let X(1) (x1
(1),x2

(1), …, xn
(1)) and X(2) (x1

(2),x2
(2), …, xn

(2)) be two points that produced

better values F
(1) and F (2) for the function f in two consecutive search rounds. We define

our stopping conditions as follows.

| F
(1)  F

(2)| < (1)

| X(1)  X(2)| < (2)

Where,

 | X(1)  X(2) | =

Both (1) and (2) are sufficiently small real numbers (e.g. 1E16). These conditions

mean that if the value of the function and the corresponding points that produced this

value do not change for two consecutive search rounds, the search has reached an

| x1
(1)  x1

(2)|

| x2
(1)  x2

(2)|

…

| xn
(1)  xn

(2)|

…… (3)

International Journal of Advanced Science and Technology

Vol.121 (2018)

6 Copyright ⓒ 2018 SERSC Australia

equilibrium point. No further enhancement to the value of the function will be achieved.

The search must therefore stop because the best value for the function f has been reached.

5. The ANT-BM Algorithm

The proposed algorithm iteratively searches for the best point X *(x1*, x2*,…, xn*) that

puts the function f in its global optimal value (minimum). It does the search by carrying

out many rounds until the stopping conditions (3) hold. Figure 5 shows the algorithmic

steps of the proposed algorithm. The algorithm has two parts: initialization process (lines

12) and search process (lines 317).

In the initialization process, the algorithm sets the centers of the effective crawlers Ci

to the centers of the domains i. In addition, it is fair in the initialization process to

consider the entire domain of each variable as a promising region. Thus, the algorithm

sets the radius of each crawler ri to i  , where  is a sufficiently small real number (e.g.

1E30). In this case, each effective crawler covers almost the entire corresponding

domain. Finally, the algorithm sets both α and β to half of the domain’s length. As the

search progresses, however, these initial settings will likely change due to the feedback

acquired during the seek for the best point for the function f.

1. FOR i=1 to n DO Ci i , ri i  ENDFOR

2.
fmin   /**large value*/

α=β=(BiAi)/2 /**set alpha and beta to half of the domain size*/

3. WHILE Stopping conditions do not hold DO

4. WHILE (ri >  for all i) DO

5. compute Ei, Li, Ri /** as specified in formulas (1) and (2)*/

6 FOR i=1 to m DO

7. FOR j=1 to n DO

8.

 xj
rnd

  RND * (Bj – Aj) /**RND=Random[0,1]*/

 xjnew  Biased Mapping(xj
rnd)

 ENDFOR

9. fv  f(Xnew)

10. IF fv < fmin THEN

11.

 fmin  fv

 X*  Xnew

 ENDIF

 ENDFOR

12.

 FOR i = 1 to n DO

 ri  ri/d

 ENDFOR

13. ENDWHILE

14.

15.

16.

 FOR i = 1 to n DO

 Ci  xi
*

 Adjust-Radius(Ci)

 ENDFOR

17. ENDWHILE

Figure 5. The Algorithmic Steps of ANT-BM Algorithm

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 7

The search process carries out several rounds each of which involves iteratively

executing the lines 317 until the stopping conditions (3) hold. Each round involves

iterative search (lines 413) and an adjustment for the search’s parameters (lines 1416).

The iterative search executes the lines 413 until the radiuses of all the effect search

regions (effective crawlers) become less than a sufficiently small real number called

threshold  (e.g. =1E300). In any iteration, the algorithm conducts m experiments each

of which consists of generating n random numbers xj
rnd within the range of the variables’

domains. Each of the n random numbers xj
rnd is then redirected to only one of the three

regions using our biased mapping in Figure 3. The result of applying the biased mapping

to the random numbers xj
rnd is the substitution Xnew(x1

new, x2
new, …, xn

new) for the function f.

If the current substitution Xnew produces a better value for the function f, the algorithm

keeps both the substitution Xnew and this better value (lines 10 and 11) in respectively the

variables X* and fmin. The value of f and the substitution Xnew constitute fundamental

information that will be used as a feedback for adjusting the search parameters for the

next round.

After finishing the m experiments, the algorithm reduces the radiuses of the effective

crawlers ri by d (line 12) and re-calculates the amount of bias, where d can be any real

number greater than one ("> 1"). The main objective of reducing the radiuses ri’s is to

gradually increase the bias toward the effective crawlers, but without ignoring the other

two regions. Therefore, the part of the domain covered by the effective crawler is

thoroughly searched and the likelihood of finding the global minimum is greatly

increased.

After each round, the algorithm makes use of the feedback from the just-finished round

to adjust the search parameters for the next round. Adjusting the search parameters is

done as follows. First, the algorithm moves the centers of the effective crawlers to the so-

far best point X* because this point has produced a better value of the function (line 15).

The objective of changing the center of the effective crawler is to focus the search in the

neighborhood of this promising point since it is highly likely that the global best point is

located in its neighborhood. Second, it computes the corresponding radiuses ri for each

effective crawler (line 16). Computing each radius ri is done using the procedure

Adjust-Radius, which is defined in Figure 6. The logic of the computation is

straightforward. If the new computed center of the effective crawler is greater than the

center of the domain (i), the radius is the absolute value of upper limit of the domain (Bi)

minus Ci. Otherwise, it is the absolute value of the difference between the new center of

the effective crawler Ci and lower limit of the domain (Ai).

Adjust-Radius(Ci)

 IF Ci > i THEN ri = |Bi – Ci|

 ELSE ri= |Ci – Ai|;

END Adjust-Radius

Figure 6. Computing the Radius ri of the Effective Crawler

Once the search parameters are adjusted, the algorithm is ready for a new round.

Launching a new round depends, however, on whether the stopping conditions hold or

not. If these conditions do not hold, a new round is launched using the new centers and

radiuses of the effective crawlers. If the stopping conditions actually hold, the search

stops. That is because if no enhancement to the value of f is achieved for two consecutive

stages, the search has reached an equilibrium point; any new round will not produce better

results.

International Journal of Advanced Science and Technology

Vol.121 (2018)

8 Copyright ⓒ 2018 SERSC Australia

6. Experimental Results

We implemented our algorithm using Java programming language. The execution

hardware is a laptop dual core processor (1.7GHz) with 2 GB memory. The operating

system is windows 7 (32 bits).5

We evaluated our algorithm using a large number of hard benchmark functions

obtained from [5][6][7][29]. Table 1 shows part of these benchmark functions (54

functions), their dimensions (N), their global minimum (f(x*)), and domains of the

variables. Figure 7 shows the graphs of a sample of these benchmark functions. In all our

evaluations, we set the number of experiments m to "5", the radiuses' reduction factor d to

“1.5”, =1E320, and (1),(2) =1E16. In addition, to better estimate the CPU time, we

executed every function 40 times and recorded the minimum, average, and maximum

time over all of the 40 runs.6

Table 1. A Set of Function Benchmarks (54 different functions)

Benchmark Functions Benchmark Functions

Alpine 1 (N) f(x*) = 0, 10  xi  10 Booth (2) f(x*) = 0, 10  xi  10

Ackley (N), f(x*) = 0, 32.768xi 32.768 Rastrigin (N) f(x*) = 0,5.12xi 5.12

Sphere (N) f(x*) = 0, 100xi 100 Beale (2) f(x*) = 0,-4.5  xi  4.5

Exponential(N) f(x*) = 1, 1xi 1 Bukin (2) f(x*) =0, -15  xi  15

EASOM (2) f(x*) = 1, 100xi 100 Cross-In-Tray(2) f(x*)= 2.062,

 10xi 10

Drop-wave (2) f(x*) = 1, 5.12xi 5.12 Grienback (N) f(x*)=0, 100xi 100

Holder Table (2) f(x*) = −19.20850,

10xi 10

Levy (N) f(x*) = 0, 10  xi  10

Schaffer (N), f(x*) = 0 -10xi 10 Schwefle (N) f(x*) = 0,-500xi 500

Shubert (5), f(x*) =-186.7309,

−10 ≤ xi ≤ 10
Perm (N) f(x*)=0, -Nxi N

Rotated Hyper-Ellipsoid (N),

f(x*) = 0, 65.536 xi 65.536

Sum of Different Powers (N),

f(x*) = 0, 1 xi 1

Sum Squares (N), f(x*) = 0,

10 xi 10

Matyas (2) f(x*)=0, x*(0),

-10 xi 10

Zakharov (N) f(x*)=0,

5 xi 10

Michalewicz (N), f(x*) = 1.8013, 4.687658,

9.66015 for respectively N=2, 5, 10, 0 xi 

Eggholder (2) f(x*) = 959.6407,

 512 xi 512

Goldstein Price (2) f(x*) = 3,

2 xi 2

Damavandi (2) f(x*)=0, x*(2) 0 xi 14 Xin-She Yang's Function No.02 (N) f(x*)=0,

x*(0), 2 xi 2

Xin-She Yang No. 04 (N) f(x*) = 1,

x*(0), 10 xi 10

CrossLegTable(2) f(x*)=0, x*(0), 10 xi

10

DropWave (N), f(x*) = 1,

5.12xi 5.12

RANA Function (N) f(x*) = 511.73, 512xi

512

Xin-She Yang No. 03 (N) f(x*)= 1,

20 xi 20

Styblinski-Tang(N) f(x*)= 39.1659*N,

 5 xi 5

Test Tube Holder (2), f(x*) = 10.8723, Pen Holder(2) f(x*)=0.96353483

5 The hardware used to test the performance of the other algorithms is more powerful than ours.

They mostly used Intel Core i5-3210M processor runs at 2.5 GHz or better (see [16] for instance).
6 In fact, we tried several values for d within the interval (1, 10]. We did a simulation for choosing

d. The simulation showed that as d increases the CPU time decreases but the error starts also

slightly building up. The value "1.5" for d is found to be a reasonable compromise between the

CPU time the average error. We have not tested values for d greater than 10. We set m to 5 because

we observed during simulation that increasing m does not improve the precision while increases

CPU time.

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 9

10 xi 10 11 xi 11

Levy 13 (2) f(x*) = 0, 10 xi 10 Himmelblau (2) f(x*)=0 , 6 xi 6

Salamon (N) f(x*)=0, 10 xi 10 Trid (N) f(x*)= N(N1)(N+4)/6

–N2 xi N2

Adjiman (2) f(x*)= 2.02181

1 x1 2, 1 x2 1
Brown(N) f(x*) = 0, 1 xi 4

Chung Reynolds(N) f(x*)=0,

100 xi 100

Dixon and Price(N) f(x*)=0 ,

 10 xi 10

Powell Sum(N) f(x*)=0, 1xi 1 Giunta (N) f(x*)=0.0644704, 1 xi 1

Cigar (N) f(x*)=0, 100 xi 100 Whitley (2) f(x*) =0, 10.24 xi 10.24

Branin (2) f(x*)=0.397887

5 x1 10, 0 x2 15

Trefethen(2) f(x*)=3.3068686474

10 xi 10

Egg Crater (N) f(x*) = 0, 5xi 5 Crowned Cross (2) f(x*) = 0.0001, 10xi

10

Leon (N) f(x*)=0 1.2xi 1.2 Sargan (N) f(x*)=0, 100xi 100

Damavandi

Cross-Leg-Table

Ackley

Figure 7. Graphs of a Sample of our Benchmark Functions

6.1. The ANT-BM Algorithm Performance

We start our empirical analysis by showing the performance of our algorithm, ANT-

BM, using a set of carefully selected hard functions from Table 1. Table 2 shows these

functions, their dimensions (N), and the actual minimum (True). It additionally shows the

performance figures in terms of the average computed minimum and the CPU time (min,

average, and max) required for computing this minimum in milliseconds (ms).

Referring to Table 2, our algorithm found the exact global minima for most of the

functions and very close approximations of the minimum for the rest. (The exact solutions

are shaded and boldfaced.) Furthermore, the algorithm performed really well in terms of

CPU time. Observe that for all cases except for Trid (10) and Brown (10), the algorithm

required a maximum time that is less than "0.85" seconds to find the minimum.

Table 2. ANT-BM’s Performance in Terms of Solution Precision and CPU
Time

Function (N)

Minimum CPU Time (ms)

True Average

Computed

Min Average Max

Trid (2) 2 2 28 31 37

Trid (5) 30 30 249 266 280

Trid (10) 210 210 9,981 10,001 10,657

Adjiman (2) 2.02181 2.02180999 502 531 541

Brown (2) 0 1E20 67 78 92

Brown (5) 0 3E12 498 506 517

Brown (10) 0 6E16 4,977 4,995 5,023

Chung Reynolds (2) 0 0 44 51 59

Chung Reynolds (5) 0 0 74 77 85

International Journal of Advanced Science and Technology

Vol.121 (2018)

10 Copyright ⓒ 2018 SERSC Australia

Chung Reynolds (10) 0 0 86 87 87

Dixon and Price (2) 0 1E13 25 31 38

Dixon and Price (5) 0 2E10 700 701 704

Powell Sum (2) 0 0 55 63 76

Powell Sum (5) 0 0 88 92 99

Powell Sum 10) 0 0 117 128 135

Giunta (2) 0.064470 0.064470 92 94 97

Salomon (2) 0 0 61 78 89

Salomon (5) 0 0 114 125 142

Salomon (10) 0 0 134 139 151

Cigar (2) 0 0 50 53 57

Cigar (5) 0 0 108 111 121

Cigar (10) 0 0 125 133 143

Whitley (2) 0 0 91 91 91

RANA (2) -511.73 -511.7328 9 11 18

Goldstein Price (2) 3 3 47 62 74

Booth (2) 0 0 71 95 110

Easom (2) -1 -1 91 124 131

Bukin06 (2) 0 4.7E8 90 118 130

Cross-In-Tray (2) -2.06261 -2.06261 8 9 15

Egg Holder (2) -959.6407 959.6406 125 356 444

Damavandi (2) 0 1E14 484 495 500

CrossLegTable (2) -1 -1 78 83 95

Schaffer2 (2) 0 0 3 3 3

Shubert (5) -186.7309 -186.7309 8 12 19

Matyas (2) 0 0 62 67 78

Test Tube Holder (2) -10.8723 -10.8723 82 126 187

Pen Holder (2) -0.963534 -0.963534 35 42 53

Levy 13 (2) 0 7.6E22 134 245 368

Himmelblau (2) 0 6.2E31 96 125 145

Beale (2) 0 1.02E29 119 278 375

Holder Table (2) -19.20850 -19.20850 25 28 32

Branin (2) 0.397887 0.397887 57 63 75

Trefethen (2) -3.3036868 -3.306868 556 755 812

Egg Crater (2) 0 0 36 43 57

Crowned Cross(2) 0.0001 0.0001 14 16 17

Table 3 shows the performance of our algorithm ANT-BM, but for higher dimensional

functions. The performance is represented in terms of true and average computed global

minimum and CPU time (minimum, average, and maximum). (Again the exact solutions

are Boldfaced and shaded.)

Table 3. ANT-BM’s Performance for Higher Dimensional Functions

Benchmark
Global-Minimum CPU-Time (milliseconds)

True
Average

Computed
Min Average Max

Function (N)

Alpine 1

2 0 0 62 67 77

10 0 0 136 141 157

100 0 0 310 321 344

300 0 0 544 666 702

1000 0 0 1,587 1,802 2,111

Ackley

2 0 0 10 17 29

10 0 0 26 32 41

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 11

100 0 0 91 97 102

300 0 0 215 219 223

1000 0 0 398 485 513

Sphere

2 0 0 30 30 30

10 0 0 52 58 62

100 0 0 101 102 103

300 0 0 205 268 305

1000 0 0 483 496 508

Rastrigin

2 0 0 5 6 6

10 0 0 9 11 11

100 0 0 20 21 23

300 0 0 41 42 43

1000 0 0 104 112 119

Exponential

2 -1 -1 4 5 5

10 -1 -1 7 9 15

100 -1 -1 17 18 18

300 -1 -1 30 31 33

1000 -1 -1 76 77 77

Griewank

2 0 0 6 6 6

10 0 0 11 13 13

100 0 0 24 26 31

300 0 0 49 50 50

1000 0 0 134 135 135

Levy

2 0 1.5E32 396 421 442

10 0 1.4E31 456 501 513

100 0 1.5E32 500 516 870

300 0 0 1,351 1,452 1,604

1000 0 1.5E32 4,060 4,098 4,319

Schwefel
2 0 1E12 7 8 9

10 0 2E6 121 134 162

Perm
2 0 2.7E29 188 207 221

10 0 6E8 68,322 98,012 102,095

Rotated Hyper-

Ellipsoid

2 0 0 80 94 121

10 0 0 265 266 266

100 0 0 888 950 996

300 0 0 1,675 1,700 1,861

1000 0 0 4,670 5,078 5,433

Sum of Different

Powers

2 0 0 53 61 72

10 0 0 200 200 200

100 0 0 1,033 1,123 1,369

300 0 0 2,567 2,755 2,809

1000 0 0 3,987 4,659 5,001

Sums of Squares

2 0 0 37 39 46

10 0 0 68 71 77

100 0 0 207 222 235

300 0 0 411 419 432

1000 0 0 1,249 1,433 1,497

Zakharov

2 0 0 58 63 76

10 0 0 94 111 125

100 0 0 215 219 235

1000 0 0 499 540 632

International Journal of Advanced Science and Technology

Vol.121 (2018)

12 Copyright ⓒ 2018 SERSC Australia

Michalewicz

2 -1.8013 -1.8013 113 135 147

5 -4.6876 -4.6876 2,001 2,041 2,106

10 -9.66015 -9.66015 4,964 5,112 5,555

Xin-She Yang 02

2 0 2.7E320 87 111 115

10 0 1.3E319 145 172 191

100 0 1.4E318 343 359 366

300 0 4E318 703 718 719

1000 0 1.3E317 1,209 1,356 1,704

Xin-She Yang 03

2 -1 -1 3 11 16

10 -1 -1 12 18 22

100 -1 -1 46 47 47

300 -1 -1 78 83 94

1000 -1 -1 218 230 235

Xin-She Yang 04

2 -1 -1 3 16 18

10 -1 -1 15 17 31

100 -1 -1 31 42 49

300 -1 -1 78 78 78

1000 -1 -1 188 199 203

Drop-Wave

2 -1 -1 15 16 16

10 -1 -1 15 16 16

100 -1 -1 32 44 49

300 -1 -1 47 53 62

1000 -1 -1 125 134 141

Styblinski-Tang

2 -78.332 -78.332 9 15 16

10 -391.661 -391.6616 93 94 94

100 -3916.16 -3916.616 4,912 5,281 5,305

Leon

2 0 0 191 223 276

25 0 0 311 467 901

100 0 1.97E33 1,987 2,243 2,617

Sargan

2 0 0 31 32 34

50 0 0 102 116 124

100 0 0 213 235 240

Cigar

25 0 0 95 119 121

100 0 0 196 197 197

1000 0 0 1,314 1,335 1,352

Egg Crater

30 0 0 178 189 206

100 0 0 472 484 488

1000 0 0 1,764 1,998 2,021

Generally speaking, the performance numbers in Tables 2 and 3 indicate high

effectiveness of our algorithm. For instance, the algorithm found exact minimums for

CrossLegTable and XinSheYang03 functions and a very close approximation of

the minimum for Damavandi function. The hardness index for these three functions is

so high according to [8]. In fact, as reported in [8], only 0.25%, 0.83%, and 1.08% of the

optimization algorithms have succeeded in finding reasonable approximations for the

global minimum of respectively Damavandi, CrossLegTable, and

XinSheYang03.Additionally, the CPU time is very reasonable. For instance, the

average CPU time for the majority of the functions is less than "0.5" seconds (500 ms).

6.2. Comparative Performance Analysis

To further analyze the performance of our algorithm, ANT-BM, we compare it with

many state-of-art algorithms. We call the state of art algorithms with which we compare:

reference algorithms.

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 13

We first compare ANT-BM with PSO-3P [16], ELPSO [18], PSO-EO [20], NABC

[21], and MSFLA-EO [19]. The authors in [17] also provided performance results for a

large number of algorithms including ABC, MSFLA, GA, LX-PM, SFLA, and others (see

[17] for more information) and they showed that their algorithm (PSO-3P) performed

better than these algorithms.

Tables 4 and 5 show the functions, their dimensions, and the used algorithms (our

algorithm ANT-BM is shaded for simplifying the comparison). The two tables

additionally show the performance figures in terms of the average computed minimum

and the CPU time. (Entries with asterisks "*" represent missing valuesnot reported in

the original papers.)

As could be clearly seen in the two tables, our algorithm outperformed PSO-3P and the

other algorithms in terms of either the solution precision or the CPU time or both.

Consider, for instance, Ackley function in Table 4. The global minimum for this function

is "0" (zero). Our algorithm found the exact minimum "0" for all the dimensions while

PSO-3P found only approximated minimums with an average error ranging from xE05

to xE16 (where x is some value). The MSFLA-EO algorithm found the exact global

minimum only for Ackley function with 30 variables. The authors of MSFAL-EO,

however, reported only the best obtained minimum not the average minimum. In addition,

it is unclear how the MSFLA-EO's performance will play out for functions with higher

dimensions (say, higher than 50 variables).

If we consider the CPU times, we find that PSO-3P is faster than all of the other

reference algorithms. However, our algorithm, ANT-BM, is not only faster than PSO-3P

(and by default than the others), but also it requires significantly much less CPU time.

Table 4. The Performance of Our Algorithm ANT-BM versus PSO-3P and
Others

Function N Algorithm Minimum (average) CPU Time (ms)

Ackley

10
ANT-BM 0 32

PSO-3P 7.56E−05 655

30

ANT-BM 0 43

PSO-3P 1.40E−05 558

ELPSO 0.2279 *

MSFLA-EO 0 *

PSO-EO 9.5E−04 260

PSO 2.58 *

SFLA 2.4 1,830

50
ANT-BM 0 66

PSO-3P 7.99E−15 632

100

ANT-BM 0 97

PSO-3P 8.88E − 16 1,040

ELPSO 0.2255 *

1000
ANT-BM 0 485

PSO-3P 4.52E−05 555

Griewank

10 ANT-BM 0 13

PSO-3P 0 338

30 ANT-BM 0 18

PSO-3P 1.61E5 860

ELPSO 2.27E–04 *

MSFLA-EO 0 210

ABC 4.52E−09 *

NABC 1.13E−16 *

International Journal of Advanced Science and Technology

Vol.121 (2018)

14 Copyright ⓒ 2018 SERSC Australia

PSO-EO 0 230

PSO 0 520

50 ANT-BM 0 22

PSO-3P 0 646

MSFLA-EO 0 2,060

100 ANT-BM 0 26

PSO-3P 0 589

1000 ANT-BM 0 135

PSO-3P 0 617

Table 5. The Performance of Our Algorithm versus PSO-3P and Other
Algorithms

Function N Algorithm Minimum (average) CPU Time (ms)

Rastrigin

10
ANT-BM 0 11

PSO-3P 0 1,101

30

ANT-BM 0 18

PSO-3P 0 584

ELPSO 8.6403 *

ABC 2.9E−09 *

NABC 0 *

PSO-EO 0 610

50

ANT-BM 0 19

PSO-3P 1.63E−07 482

MSFLA-EO 0 9,410

100

ANT-BM 0 21

PSO-3P 8.48E−05 595

ELPSO 5.5402 *

1000
ANT-BM 0 112

PSO-3P 1.28E−04 400

Sphere

10
ANT-BM 0 58

PSO-3P 4.75E−08 569

30

ANT-BM 0 68

PSO-3P 1.51E–08 560

ELPSO 5.244E–08 *

ABC 3.75E10 *

NABC 4.75E16 *

50
ANT-BM 0 76

PSO-3P 3.03E−08 539

100

ANT-BM 0 102

PSO-3P 1.27E–07 569

ELPSO 6.035E–05 *

1000
ANT-BM 0 496

PSO-3P 3.64E−08 599

Zakharov

10
ANT-BM 0 111

PSO-3P 2.33E−05 603

30

ANT-BM 0 125

PSO-3P 8.79E–05 643

ELPSO 0.0003 *

50
ANT-BM 0 170

PSO-3P 2.11E−05 783

100 ANT-BM 0 219

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 15

PSO-3P 8.14E–02 944

ELPSO 2.5016 *

1000
ANT-BM 0 540

PSO-3P 0 1,268

We secondly compare our algorithm with EOCSO [14]. The authors reported the

performance numbers for their algorithm (EOCSO) and additionally compared EOCSO

with other effective algorithms. The performance numbers in [14] showed that EOCSO is

superior to the other algorithms which EOCSO is compared with. The reported evaluation

in [14] includes functions with just 30 variables and only one function with 4 variables.

Table 6 shows the benchmark functions, their dimensions, the performance numbers of

our algorithm ANT-BM, EOCSO, and other algorithms reported in [14]. In general terms,

our algorithm performed better than the reference algorithms. In terms of the solution, our

algorithm was able to find exact minimums for most of the functions. Our algorithm in

addition, found better approximations of the minimum for the rest of the functions. For

instance, our algorithm found the exact minimum for the Sphere function (with dimension

30) while EOCSO produced an approximation of 1.19E201. Consider as another

example “Schwefel 2.22” function (dimension 30) whose global minimum equals to "0".

Our algorithm found an approximated minimum of 1.61E299 while the approximated

minimum by EOCSO is 6.6E116. No need to mention the other algorithms in Table 6

since their performance is inferior to EOCSO and by default to our algorithm.

Although [14] did not report time performance, we recorded the CPU time required by

our algorithm to produce the solutions.

Table 6. The Performance of Our Algorithm versus EOCSO and Others

Function[16] N Algorithm
Minimum CPU Time

(ms) True Computed

Sphere

30

ANT-BM 0 0 68

EOCSO 0 1.19E201 *

CSO 0 1.19E55 *

DE 0 3.1E12 *

PSO 0 6.78 *

BA 0 9.4E6 *

ACO 0 9.9E8 *

FPA 0 6.3E6 *

Schwefel 2.22

10 ANT-BM 0 0 64

30

ANT-BM 0 4.5E322 106

EOCSO 0 6.6E116 *

CSO 0 1.91E43 *

DE 0 3.04E8 *

PSO 0 6.59 *

BA 0 0.012 *

ACO 0 4.94E5 *

FPA 0 1.97E7 *

100 ANT-BM 0 5.56E299 125

1000 ANT-BM 0 5.7E298 574

Schwefel 1.2

10 ANT-BM 0 0 37

30

ANT-BM 0 0 51

EOCSO 0 4.49E51 *

CSO 0 7E+1 *

DE 0 15255.14 *

International Journal of Advanced Science and Technology

Vol.121 (2018)

16 Copyright ⓒ 2018 SERSC Australia

PSO 0 4.03E+2 *

BA 0 2.27E5 *

ACO 0 11951.1 *

FPA 0 2.52E2 *

100 ANT-BM 0 0 119

1000 ANT-BM 0 0 4,343

Rosenbrock

10 ANT-BM 0 0 120

30

ANT-BM 0 1.3E149 24,621

EOCSO 0 9.53E9 *

CSO 0 26.5 *

DE 0 25.83 *

PSO 0 343.6 *

BA 0 0.196 *

ACO 0 17.14 *

FPA 0 2.12E6 *

100 ANT-BM 0 0 134,100

1000 ANT-BM 0 4.45E207 361,045

Rastrigin

30

ANT-BM 0 0 18

EOCSO 0 0 *

CSO 0 0 *

DE 0 47.02 *

PSO 0 71.56 *

BA 0 30.84 *

ACO 0 108.47 *

FPA 0 15.92 *

Schwefel 2.26

10 ANT-BM -4189.829 -4189.82887 1,036

30

ANT-BM -12569.487 -12569.48661 14,739

EOCSO -12569.487 -12474.618 *

CSO -12569.487 -9133.94 *

DE -12569.487 -12546.71 *

PSO -12569.487 -7963.94 *

BA -12569.487 -8502.89 *

ACO -12569.487 -6090.03 *

FPA -12569.487 -10694.82 *

Ackley 30

ANT-BM 0 0 43

EOCSO 0 4.4E15 *

CSO 0 4.4E15 *

DE 0 4.5E7 *

PSO 0 4.91 *

BA 0 11.60 *

ACO 0 6.5E5 *

FPA 0 2.013 *

Kowalik 4

ANT-BM 0.0003074861 0.0003074861 588

EOCSO 0.0003074861 0.0003074860 *

CSO 0.0003074861 0.000330135 *

DE 0.0003074861 0.000368256 *

PSO 0.0003074861 0.000307498 *

BA 0.0003074861 0.000307834 *

ACO 0.0003074861 0.001325092 *

FPA 0.0003074861 0.000307486 *

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 17

We thirdly compare our algorithm with WOA [28], FMA [23], COA [24], ALC-PSO

[26], and DE [25]. The authors in [24] reported performance numbers for functions with

only 30 variables. We confined the comparisons to functions with only 30 variables.

 Table 7 shows the performance of our algorithm (ANT-BM) and the other algorithms.

The table shows also the time requirements for our algorithm (ANT-BM) only since no

reported CPU time for the rest. As the performance numbers show, our algorithm

performed better than all the other algorithms FMA, COA, ALC-PS and DE especially for

hard functions F1, F2, and F5. For the other functions, our algorithm's performance was

equivalent to the others except for "Schwefel 2.22" function, where the algorithms FMA,

COA, and DE actually performed slightly better than ours.

Table 7. The Performance of ANT-BM versus Other Algorithms

Function N Algorithm
Minimum Time

(ms True Computed

Sphere 30

ANT-BM 0 0 68

FMA 0 0 *

COA 0 0 *

DE 0 0 *

ALC-PSO 0 1.13E-172 *

WOA 0 1.41E-30 *

F1=



n

i

Randomix
1

4)1,0(

 -1.28 xi1.28

30

ANT-BM 0 4.93E8 1,854

FMA 0 0.364 *

COA 0 3.44E5 *

DE 0 7.7E7 *

WOA 0 0.001425 *

Sum of different powers 30
ANT-BM 0 0 409

FMA 0 0 *

Schwefel 2.22 30

ANT-BM 0 4.5E322 106

FMA 0 0 *

COA 0 0 *

DE 0 0 *

ALC-PSO 0 1.2E98 *

WOA 0 1.06E21 *

Rosenbrock 30

ANT-BM 0 1.3E149 24,621

FMA 0 0 *

COA 0 4.12E4 *

ALC-PSO 0 3.7E7 *

DE 0 0 *

Griewank 30

ANT-BM 0 0 18

FMA 0 0 *

COA 0 0 *

ALC-PSO 0 0 *

DE 0 0 *

WOA 0 0.0000289 *

F2=


4/

1

N

i

(x4i-3+10x4i-2)
2
 + 5(x4i-1

 x4i-2)
2
+ (x4i-2  x4i-1)

4
+

 10(x4i-3  x4i)
4

30

ANT-BM 0 0 433

FMA 0 7.58E10 *

F3=


4/

1

N

i

(yi
210cos(2yi)+10) 30

ANT-BM 0 0 187

FMA 0 0.252 *

International Journal of Advanced Science and Technology

Vol.121 (2018)

18 Copyright ⓒ 2018 SERSC Australia

 xi; if |xi| < 0.5

 Round(2xi) /2; otherwise

-5 xi5
ALC-PSO 0 0 *

F4=


n

i

ix
1

4
, -1.28 xi1.28

30
ANT-BM 0 0 821

FMA 0 0 *

F5=4x1
2
2.1x1

4
+1/3x1

6
+

 x1x24x2
2
+4x2

4

-5 xi5

2

ANT-BM -1.03163 -1.03163 200

FMA -1.03163 -1.03164 *

COA -1.03163 -1.0316 *

WOA -1.03163 -1.03163 *

Rastrigin

30

ANT-BM 0 0 18

FMA 0 0 *

ALC-PSO 0 7.1E15 *

DE 0 0 *

Ackley 30

ANT-BM 0 0 43

FMA 0 0 *

COA 0 8.88E16 *

ALC-PSO 0 1.69E15 *

DE 0 4.44E16 *

WOA 0 7.4043

Sum of Squares 30
ANT-BM 0 0 72

FMA 0 0 *

7. Conclusions and Future Work

This paper proposed an innovative algorithm for optimization problem. The algorithm

is based on guided-random search technique augmented with biased mapping. The

random search is guided by feedbacks. The feedbacks help the algorithm effectively

identify the promising regions for the next round and dynamically adjust the search

parameters. The biased mapping provides the algorithm with an effective mechanism that

not only maps randomly generated candidate solutions to these identified promising

regions of the variables' domain but also dynamically controls the amount of these

candidate solutions mapped to these regions. The biased mapping has yet another feature:

it does not ignore the less promising regions (or marginal regions).

We tested our algorithm using benchmark functions set. The benchmark functions

tested compromise a comprehensive testing suite for any optimization algorithm. The

testing results were really promising. These results showed that our method is both (1)

effective in finding the exact global minimum (or in some cases a so-close approximation

for it) and (2) efficient in terms of CPU time. In fact, as presented in the performance

analysis section (subsection 6.1), our algorithm was able to find exact solutions for very

hard problems (e.g. XinSheYang03 function) in a short CPU time. We compared our

algorithm with many state-of-art algorithms that adopt different search techniques. Our

algorithm performed better than these algorithms in almost all the cases.

We have two directions for future work. First, we want to use more effective random

generator than the computer built-in one. Second, we want to extend our algorithm to find

the best path that leads to the global minimum rather than the minimum value per se.

yi =

International Journal of Advanced Science and Technology

Vol.121 (2018)

Copyright ⓒ 2018 SERSC Australia 19

References

[1] O. Krause, D. R. Arbonès, and C. Igel , “CMA-ES with Optimal Covariance Update and Storage

Complexity”, 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,

Spain; (2016), pp. 370378.

[2] A. Mohamed and H. Sabry, Constrained Optimization Based on Modified Differential Evolution

Algorithm, Information Sciences, vol. 194, (2012), pp.171208.

[3] R. H. Abiyev and M. Tunay, Optimization of High-Dimensional Functions through Hypercube

Evaluation, Computational Intelligence and Neuroscience, vol. 2015, (2015). doi:10.1155/2015/967320

[4] J. Zhang, A.C. Sanderson. JADE: Self-Adaptive Differential Evolution with Optional External Archive.

IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, (2009), pp. 945958.

[5] Benchmark Functions. https://www.sfu.ca/~ssurjano/optimization.html, January (2018).

[6] M. Jamil and X.-S. Yang, “A Literature Survey of Benchmark Functions for Global Optimization

Problems”, International Journal of Mathematical Modeling and Numerical Optimization

(IJMMNO), vol. 4, no. 2, (2013), pp. 150194.

[7] A. Gavana, Global Optimization Benchmarks, http://infinity77.net, January (2018).

[8] E. Cuevas, M. Cienfuegos, D. Zaldívar, and M. Pérez-Cisneros, A Swarm Optimization Algorithm

Inspired in the Behavior of the Social-Spider, Expert Systems with Applications, vol. 40, no.16, (2013),

pp. 6374-6384.

[9] X. Meng, Y. Liu, X. Gao X., H. Zhang, “A New Bio-inspired Algorithm: Chicken Swarm

Optimization”, In: Tan Y., Shi Y., Coello C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014.

Lecture Notes in Computer Science, vol. 8794, (2014), pp. 86-94.

[10] G. G. Wang, B. Chang and Z. Zhang, A Multi-Swarm Bat Algorithm for Global Optimization, 2015

IEEE Congress on Evolutionary Computation (CEC), Sendai, (2015), pp. 480-485. doi:

10.1109/CEC.2015.7256928

[11] Y. Zhou, J. Xie, L. Li, and M. Ma, Cloud Model Bat Algorithm, The Scientific World Journal,

vol. 2014, (2014). http://dx.doi.org/10.1155/2014/237102

[12] P. W. Tsai, J. S. Pan, B. Y. Laio, and V. Istanda, “Bat Algorithm Inspired Algorithm for Solving

Numerical Optimization Problems”, Applied Mechanics and Materials, vol. 148, no. 149, (2012), pp.

134-137,.

[13] W. C. Feng, L. Kui, and S. P. Ping, “Hybrid Artificial Bee Colony Algorithm and Particle Swarm

Search for Global Optimization”, Mathematical Problems in Engineering Journal, vol. 2014 , (2014).

[14] C. Qu, S. Zhao, Y. Fu, and W. He., “Chicken Swarm Optimization Based on Elite Opposition-Based

Learning, Mathematical Problems in Engineering, vol. 2017, (2017).

[15] I. A. Etukudo, “Optimal Designs Technique for Solving Unconstrained Optimization Problems with

Univariate Quadratic Surfaces”, American Journal of Computational and Applied Mathematics, vol. 7,

no. 2, (2017), pp. 3336.

[16] S. Gerardo de-los-Cobos-Silva, M. Á ngel Gutiérrez-Andrade, and et al, “An Efficient Algorithm for

Unconstrained Optimization”, Journal of Mathematical Problems in Engineering, vol. 2015, (2015).
[17] A. R. Jordehi, “Enhanced Leader PSO (ELPSO): A New PSO Variant for Solving Global Optimization

Problems”, Applied Soft Computing Journal, vol. 26, (2015), pp. 401–417.

[18] X. Li, J. Luo, M.-R. Chen, and N. Wang, “An Improved Shuffled Frog-Leaping Algorithm with

Extremal Optimization for Continuous Optimization”, Information Sciences, vol. 192, (2012), pp. 143–

151.
[19] M.-R. Chen, X. Li, X. Zhang, and Y.-Z. Lu, “A Novel Particle Swarm Optimizer Hybridized with

Extremal Optimization”, Applied Soft Computing Journal, vol. 10, no. 2, (2010), pp. 367–373.

[20] Y. Xu, P. Fan, and L. Yuan, “A Simple and Efficient Artificial Bee Colony Algorithm”, Mathematical

Problems in Engineering, vol. 2013, (2013).

[21] M. Farahani, S. B. Movahhed, S. F. Ghaderi, “A Hybrid Meta-Heuristic Optimization Algorithm based

on SFLA”, Proceedings of the 2nd International Conference on Engineering Optimization, pp. 18,

Lisbon, Portugal, Sept. (2010).

[22] S. Chapra and R. Canale, Numerical Methods for Engineers, 7th edition, McGraw-Hill Education,

(2014).

[23] A. Ritthipakdee, A. Thammano, N. Premasathian, and D. Jitkongchuen. Firefly Mating Algorithm

for Continuous Optimization Problems. Computational Intelligence and Neuroscience Journal, Vol.

2017, (2017). https://doi.org/10.1155/2017/8034573

[24] M. Li, H. Zhao, X. Weng, and T. Han, Cognitive Behavior Optimization Algorithm for Solving

Optimization Problems, Applied Soft Computing Journal, vol. 39, (2016), pp. 199–222.

https://doi.org/10.1016/j.asoc.2015.11.015

[25] D. Jitkongchuen and A. Thammano, “A Self-Adaptive Differential Evolution Algorithm for Continuous

Optimization Problems”, Artificial Life and Robotics, vol. 19, no. 2, (2014), pp. 201–208.

[26] W.-N. Chen, J. Zhang, Y. Lin et al., “Particle Swarm Optimization with an Aging Leader and

Challengers”, IEEE Transactions on Evolutionary Computation, vol. 17, no. 2, (2013), pp. 241–258.

[27] S. Mirjalili, S. M Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a Nature-Inspired Algorithm for

Global Optimization”, Neural Computing and Applications, vol. 27, no. 2, (2016), pp. 495-513.

http://infinity77.net/
https://www.hindawi.com/98651463/
https://www.hindawi.com/87248547/
https://www.hindawi.com/79175239/
https://www.hindawi.com/75619485/

International Journal of Advanced Science and Technology

Vol.121 (2018)

20 Copyright ⓒ 2018 SERSC Australia

[28] S. Mirjalili, A. Lewis, the Whale Optimization Algorithm. Advances in Engineering Software, vol. 95,

(2016), pp. 51-67.

[29] Well-known benchmark functions. http://benchmarkfcns.xyz/fcns, (2018).

[30] M.N.A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A Comprehensive Review of Swarm Optimization

Algorithms”, PLOS ONE, vol. 10, no. 5, (2015).

