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Abstract 

Finding global optima for functions is a very important problem. Although a large 

number of methods have been proposed for solving this problem, more effective and 

efficient methods are greatly required. This paper proposes an innovative method that 

combines different effective techniques for speeding up the convergence to the solution 

and greatly improving its precision. In particular, the method uses feedback-guided 

random search technique to identify the promising regions of the domains and uses the 

biased mapping technique to focus the search on these promising regions, without 

ignoring the other regions of the domains. Therefore, at any point of time, the domain of 

each variable is entirely covered with much more emphasis on the promising regions. 

Experiments with our prototype implementation showed that our method is efficient, 

effective, and outperformed the state-of-art techniques. 

 

Keywords: Optimization problem; biased mapping; global optima; effective search 

regions; local optima 

 

1. Introduction 

Most of the real world problems lend themselves to functions optimization. 

Unfortunately, most of these functions are difficult to optimize using direct mathematical 

means because they are non-differentiable, have no derivatives, not continuous, and have 

multiple local optima. Researchers have proposed different methods to tackle these 

problems. These methods adopt different techniques to speed up the search and improve 

the precision of the solution (minimum or maximum). The major techniques include 

evolutionary algorithms (such as [14, 15, 16, 20, 21, 25, 27, 28]) and swarm intelligence 

algorithms (such as [814, 1720, 30]). Other methods use direct mathematical methods 

(such as [22]).  

In order for the solution method to be effective, it must possess several properties. 

First, it must be able to find the exact global optimum or at least a so-close approximation 

to it. That is, it must avoid being caught in local optima. Second, in order to be practical, 

it must require a minimal amount of resources (especially CPU time). Third, it must be 

general and not tailored to any specific set of problems. Forth, it must be easy to 

implement. 

This paper proposes a feedback-guided random search method augmented with biased 

mapping technique. We call our method ANT-BM. 2  This method is based on three 

effective techniques: lookback capability technique, biased mapping technique, and auto-

adjusting technique. The lookback technique enables the method to use the intermediate 

search results from previous search round as a feedback for identifying the promising 
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regions for the next search round. (The promising regions are those in which the solution 

is highly expected.) The biased mapping technique enables the method to dynamically 

condense the search in the promising regions of the domains. In other words, it redirects 

more randomly generated candidate solutions to these promising regions. The auto-

adjusting technique uses the feedback to automatically adjust the method’s search 

parameters. In particular, the auto-adjusting technique utilizes the feedback to 

dynamically move the focus of the search to the promising regions. These techniques are 

augmented with the ability to dynamically reduce the size of the promising regions. The 

latter property (reduction of the promising regions) causes the search to concentrate on 

continuously narrowing promising regions, which results in thoroughly searching these 

regions and speeding up the convergence to the solution.  

The paper makes the following contributions. First, it proposes a highly effective and 

efficient (time/space wise) method for finding the optima for n-dimensional functions. 

Second, it defines biasing coefficients and effective mapping techniques that enable 

focusing the search on the parts of a domain where the solution is likely to reside without 

ignoring the other parts of the domain. Third, the method provides techniques for 

dynamically turning the focus of the search to parts of the domains using feedbacks 

collected during the search. 

We present our contributions as follows. Section 2 introduces some basic 

terminologies. Section 3 discusses the biased mapping technique. Section 4 presents the 

stopping conditions and Section 5 presents the algorithmic details of the proposed 

method. We present our comprehensive analysis for the performance of our method in 

Section 6. We conclude and give directions for future work in Section 7.   

 

2. Terminologies 

Let f (x1, x2, …, xn) be an n-dimensional function and [Ai, Bi] be bounded domains of 

the variables xi (i=1, 2, …, n). Optimizing a function f means finding an n-dimensional 

point X*(x1*, x2*, …, xn*) from the domains of the variables such that the function f is in 

its optimal value (minimum or maximum). We call the point X*(x1*, x2*, …, xn*) the best 

global point for the function f. We also call each value xi* the best substitution for the 

variable xi. We in addition call the part of the domain in which the best substitution is 

highly expected the effective search region or promising region. 

 

3. The Biased Mapping Technique 

We introduce in this section the biased mapping technique. We first define the biasing 

coefficients in subsection 3.1. We then use these biasing coefficients to define our biased 

mapping in subsection 3.2. 

 

3.1. The Biasing Coefficients 

Let [Ai, Bi] be a bounded domain of a variable xi and i be the center of this domain. 

Our proposed algorithm splits the domain of each variable xi into an effective search 

region and two marginal search regions. The three regions entirely cover the domain of 

each variable. Figure 1 shows a bonded domain [Ai, Bi] and the three regions. The 

effective search regions are designated as effective crawlers. The marginal search regions 

are designated as left region and right region.3 The effective crawler, which is centered at 

some point Ci  [Ai, Bi] and whose radius is ri, covers the region of the domain in which 

the best substitution xi* is highly expected. (That is why we call this region effective 

search region.) The effective crawler provides the method with an effective mechanism to 

                                                           
3 We designate the effective search region as effective crawler because this region crawls over the 

interval during the search for the best point for a function f. 
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focus most of the search on the promising regions. The left and right regions cover the 

other parts of the domain in which the best substitution may exist (but not very expected). 

These two marginal regions serve as a guard to avoid missing the best substitution if this 

substitution is not really within the region covered by the effective crawler. 

Figure 1 also shows a random number generator that produces uniformly distributed 

random numbers within the range (Bi – Ai). This generator provides the technique with 

random numbers that serve as raw substitutions for f. (As we discuss next, raw 

substitutions need further processing before they can be used in the function.) 

Since the best point is highly expected in the effective regions, we must ensure a 

comprehensive search for these regions without of course ignoring the marginal regions. 

We must therefore redirect (or map) most of the random numbers to the effective regions. 

This idea is illustrated in Figure 1, where a large number of the random numbers 

generated in the range "BiAi" (thick line) is redirected to the region of the effective 

crawler using the biased mapping technique, which will be discussed in great details in 

the next subsection. 

 

Figure 1. The Effective Crawler and the Right/Left Marginal Regions 

To focus the search on the effective search regions, we define the following two 

values, Fi
bias and Gi

bias, which we call the biasing coefficients. 
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Ei is the amount of the bias to the effective crawler region. It determines the number of 

the random numbers, which are mapped to the effective search region. For instance, if the 

range of the random numbers is 10 and Ei = 6, then roughly 60% of the randomly 

generated numbers within this range will be mapped to the effective crawler and the other 

40% will be mapped to the marginal regions. The values Li and Ri determine the number 

of the random numbers that are mapped to the left and right regions respectively. The 

main goal of the Li and Ri is to ensure that no portion of a variable’s domain is left 

unsearched. According to the definition of 𝐹𝑖
𝑏𝑖𝑎𝑠 and 𝐺𝑖

𝑏𝑖𝑎𝑠, at least a range of size  of 

the domain is redirected to the effective crawler and at most a range of size  of the 

domain is redirected to both Li and Ri.4 

Additionally, since both Fi
bias and Gi

bias depend on the radius of the effective crawler ri, 

the amounts of bias Ei, Ri, and Li vary as the radius ri changes. That is, they dynamically 

increase or decrease during the search as ri changes (decreases or increases).  

The effective crawler can move to any point within a variable's domain by moving its 

center Ci. In addition, crawlers on different domains can be in different positions and have 

different radiuses. That is, the position and radius of each crawler has no relation to the 

position and radius of the crawlers on the other domains and only depend on the 

intermediate results of the search. 

Before concluding this subsection, we point out two important properties of our 

technique. First, the ability of moving the effective crawler to different parts of a 

variable’s domain allows our algorithm to dynamically shift the search focus to any part 

of this domain in which the solution is highly expected. Second, the ability of biasing 

more random points to a specific part of a variable’s domain ensures a comprehensive 

search for this part without ignoring the other parts of the domain. Both properties ensure 

not only a full coverage and exhaustive search for the entire domain, but also escape 

being trapped in local optima because the search is not restricted to only specific regions 

of a domain (it actually always covers the entire domain although more focus is dedicated 

to the effective regions). 

 

3.2. The Biased Mapping 

The biased mapping plays a vital role in the proposed technique. It largely biases the 

search toward the effective regions. Its major role is to redirect (map) more randomly 

generated numbers (or raw substitutions) to a specific region of a variable’s domain. In 

particular, we require our biased mapping to use the amounts of bias (defined in equation 

2) as a criterion and redirect more random numbers to the effective search region than to 

the other two regions. (Recall that the effective search region is more promising.)  

Let i be the center of the bounded domain [Ai, Bi] of the variable xi and Ci be the 

center of the region covered by the effective crawler for i =1, 2, …, n. Figure 3 shows our 

proposed biased mapping. 

Generally speaking, the biased mapping redirects a raw random number xi
rnd to only 

one of the three regions based on the amounts of bias Ei, Li, and Ri. Therefore, in lines 2 

through 6 (similarly lines 8 through 12), we compare the raw random number xi
rnd to the 

amount of bias and redirect it (xi
rnd) to any of their respective regions only if xi

rnd is less 

than the corresponding amount of bias. If xi
rnd is less than Ri (line 2), line 3 redirects xi

rnd 

to the right region (since Ri is the amount of bias to the right region). If, however, xi
rnd is 

less than Li+ Ri (line 4), line 5 redirects xi
rnd to the left region. If none of the conditions is 

true, line 6 redirects xi
rnd to effective search region. 

It is clear that if the random generator is fair (uniformly covers the domain [Ai, Bi]), 

more random numbers will be redirected to the effective search region. That is because 

the amount of bias to the effective search region Ei is always greater than the total amount 

of bias to both the left and right regions Li+Ri. Additionally, although less focus on the 
                                                           
4 We can show with a simple math that Ei + Li + Ri = Di. 
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left and right regions, they are nevertheless still covered by random numbers since their 

respective amounts of bias Li and Ri are never zero.  

The comparison between Ci and i in line 1 (and implicitly in line 7) is to correctly 

map between the right and left regions. For instance, if Ci is greater than i, the right 

region is smaller than the left region. Therefore, we first try to map the raw random 

number to right region (the smaller) before considering mapping it to the left region (the 

lager). 

1. IF   Ci > i THEN 

2.      IF 
rnd

ix  < Ri THEN 

3.             xi
new = iibias
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Figure 3. The Biased Mapping 

4. Stopping Conditions 

Let X(1) (x1
(1),x2

(1), …, xn
(1)) and X(2) (x1

(2),x2
(2), …, xn

(2)) be two points that produced 

better values F 
(1) and F (2)  for the function f in two consecutive search rounds. We define 

our stopping conditions as follows. 

| F 
(1)   F 

(2)| < (1) 

| X(1)   X(2)| < (2) 

Where,  

                                                              | X(1)   X(2) | =  

 

 

 

Both (1) and (2) are sufficiently small real numbers (e.g. 1E16). These conditions 

mean that if the value of the function and the corresponding points that produced this 

value do not change for two consecutive search rounds, the search has reached an 

| x1
(1)   x1
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equilibrium point. No further enhancement to the value of the function will be achieved. 

The search must therefore stop because the best value for the function f has been reached.  

 

5. The ANT-BM Algorithm 

The proposed algorithm iteratively searches for the best point X *(x1*, x2*,…, xn*) that 

puts the function f in its global optimal value (minimum). It does the search by carrying 

out many rounds until the stopping conditions (3) hold. Figure 5 shows the algorithmic 

steps of the proposed algorithm. The algorithm has two parts: initialization process (lines 

12) and search process (lines 317). 

In the initialization process, the algorithm sets the centers of the effective crawlers Ci 

to the centers of the domains i. In addition, it is fair in the initialization process to 

consider the entire domain of each variable as a promising region. Thus, the algorithm 

sets the radius of each crawler ri to i  , where  is a sufficiently small real number (e.g. 

1E30). In this case, each effective crawler covers almost the entire corresponding 

domain. Finally, the algorithm sets both α and β to half of the domain’s length. As the 

search progresses, however, these initial settings will likely change due to the feedback 

acquired during the seek for the best point for the function f.  

 

1. FOR i=1 to n DO Ci i , ri i  ENDFOR  

2. 
fmin   /**large value*/  

α=β=(BiAi)/2 /**set alpha and beta to half of the domain size*/ 

3. WHILE Stopping conditions do not hold DO 

4.     WHILE (ri >  for all i) DO 

5.         compute Ei, Li, Ri /** as specified in formulas (1) and (2)*/ 

6         FOR i=1 to m DO 

7.             FOR j=1 to n DO 

8. 

               xj
rnd

  RND * (Bj – Aj) /**RND=Random[0,1]*/ 

               xjnew  Biased Mapping(xj
rnd) 

            ENDFOR 

9.             fv  f(Xnew) 

10.             IF fv < fmin THEN 

11. 

               fmin  fv 

               X*  Xnew 

            ENDIF 

        ENDFOR 

12. 

       FOR i = 1 to n DO  

           ri  ri/d 

       ENDFOR 

13.     ENDWHILE 

14. 

15. 

16. 

    FOR i = 1 to n DO  

      Ci  xi
*
  

      Adjust-Radius(Ci)  

    ENDFOR 

17. ENDWHILE 

Figure 5. The Algorithmic Steps of ANT-BM Algorithm 
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The search process carries out several rounds each of which involves iteratively 

executing the lines 317 until the stopping conditions (3) hold. Each round involves 

iterative search (lines 413) and an adjustment for the search’s parameters (lines 1416). 

The iterative search executes the lines 413 until the radiuses of all the effect search 

regions (effective crawlers) become less than a sufficiently small real number called 

threshold  (e.g. =1E300). In any iteration, the algorithm conducts m experiments each 

of which consists of generating n random numbers xj
rnd within the range of the variables’ 

domains. Each of the n random numbers xj
rnd is then redirected to only one of the three 

regions using our biased mapping in Figure 3. The result of applying the biased mapping 

to the random numbers xj
rnd is the substitution Xnew(x1

new, x2
new, …, xn

new) for the function f. 

If the current substitution Xnew produces a better value for the function f, the algorithm 

keeps both the substitution Xnew and this better value (lines 10 and 11) in respectively the 

variables X* and fmin. The value of f and the substitution Xnew constitute fundamental 

information that will be used as a feedback for adjusting the search parameters for the 

next round. 

After finishing the m experiments, the algorithm reduces the radiuses of the effective 

crawlers ri by d (line 12) and re-calculates the amount of bias, where d can be any real 

number greater than one ("> 1"). The main objective of reducing the radiuses ri’s is to 

gradually increase the bias toward the effective crawlers, but without ignoring the other 

two regions. Therefore, the part of the domain covered by the effective crawler is 

thoroughly searched and the likelihood of finding the global minimum is greatly 

increased. 

After each round, the algorithm makes use of the feedback from the just-finished round 

to adjust the search parameters for the next round. Adjusting the search parameters is 

done as follows. First, the algorithm moves the centers of the effective crawlers to the so-

far best point X* because this point has produced a better value of the function (line 15). 

The objective of changing the center of the effective crawler is to focus the search in the 

neighborhood of this promising point since it is highly likely that the global best point is 

located in its neighborhood. Second, it computes the corresponding radiuses ri for each 

effective crawler (line 16). Computing each radius ri is done using the procedure 

Adjust-Radius, which is defined in Figure 6. The logic of the computation is 

straightforward. If the new computed center of the effective crawler is greater than the 

center of the domain (i), the radius is the absolute value of upper limit of the domain (Bi) 

minus Ci. Otherwise, it is the absolute value of the difference between the new center of 

the effective crawler Ci and lower limit of the domain (Ai). 

 
Adjust-Radius(Ci) 

  IF Ci > i THEN ri = |Bi – Ci| 

 ELSE  ri= |Ci – Ai|; 

END Adjust-Radius 

Figure 6. Computing the Radius ri of the Effective Crawler 

Once the search parameters are adjusted, the algorithm is ready for a new round. 

Launching a new round depends, however, on whether the stopping conditions hold or 

not. If these conditions do not hold, a new round is launched using the new centers and 

radiuses of the effective crawlers. If the stopping conditions actually hold, the search 

stops. That is because if no enhancement to the value of f is achieved for two consecutive 

stages, the search has reached an equilibrium point; any new round will not produce better 

results.  
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6. Experimental Results 

We implemented our algorithm using Java programming language. The execution 

hardware is a laptop dual core processor (1.7GHz) with 2 GB memory. The operating 

system is windows 7 (32 bits).5  

We evaluated our algorithm using a large number of hard benchmark functions 

obtained from [5][6][7][29]. Table 1 shows part of these benchmark functions (54 

functions), their dimensions (N), their global minimum (f(x*)), and domains of the 

variables. Figure 7 shows the graphs of a sample of these benchmark functions. In all our 

evaluations, we set the number of experiments m to "5", the radiuses' reduction factor d to 

“1.5”, =1E320, and (1),(2) =1E16. In addition, to better estimate the CPU time, we 

executed every function 40 times and recorded the minimum, average, and maximum 

time over all of the 40 runs.6  

Table 1. A Set of Function Benchmarks (54 different functions) 

Benchmark Functions Benchmark Functions 

Alpine 1 (N) f(x*) = 0, 10  xi  10  Booth (2) f(x*) = 0, 10  xi  10  

Ackley (N), f(x*) = 0, 32.768xi 32.768   Rastrigin (N) f(x*) = 0,5.12xi 5.12  

Sphere (N) f(x*) = 0, 100xi 100  Beale (2) f(x*) = 0,-4.5  xi  4.5 

Exponential(N) f(x*) = 1, 1xi 1  Bukin (2) f(x*) =0, -15  xi  15  

EASOM (2) f(x*) = 1, 100xi 100 Cross-In-Tray(2) f(x*)= 2.062, 

 10xi 10 

Drop-wave  (2) f(x*) = 1,  5.12xi 5.12 Grienback (N) f(x*)=0, 100xi 100 

Holder Table (2) f(x*) = −19.20850,   

10xi 10   

Levy (N) f(x*) = 0, 10  xi  10  

Schaffer (N), f(x*) = 0 -10xi 10  Schwefle (N) f(x*) = 0,-500xi 500  

Shubert (5), f(x*) =-186.7309,  

−10 ≤ xi ≤ 10 
Perm (N) f(x*)=0, -Nxi N 

Rotated Hyper-Ellipsoid (N),  

f(x*) = 0, 65.536 xi 65.536 

Sum of Different Powers (N),  

f(x*) = 0, 1 xi 1 

Sum Squares (N), f(x*) = 0,  

10 xi 10 

Matyas (2) f(x*)=0, x*(0), 

-10 xi 10  

Zakharov (N) f(x*)=0,  

5 xi 10 

Michalewicz (N), f(x*) = 1.8013, 4.687658, 

9.66015 for respectively N=2, 5, 10, 0 xi  

Eggholder (2) f(x*) = 959.6407, 

 512 xi 512 

Goldstein Price (2) f(x*) = 3,  

2 xi 2 

Damavandi (2) f(x*)=0, x*(2) 0 xi 14 Xin-She Yang's Function No.02 (N) f(x*)=0, 

x*(0),  2 xi 2 

Xin-She Yang No. 04 (N) f(x*) = 1, 

x*(0), 10 xi 10 

CrossLegTable(2) f(x*)=0, x*(0),  10 xi 

10 

DropWave (N), f(x*) = 1, 

5.12xi 5.12 

RANA Function (N) f(x*) = 511.73, 512xi 

512 

Xin-She Yang No. 03 (N) f(x*)= 1,  

20 xi 20 

Styblinski-Tang(N) f(x*)= 39.1659*N, 

 5 xi 5 

Test Tube Holder (2), f(x*) = 10.8723, Pen Holder(2) f(x*)=0.96353483 

                                                           
5 The hardware used to test the performance of the other algorithms is more powerful than ours. 

They mostly used Intel Core i5-3210M processor runs at 2.5 GHz or better (see [16] for instance). 
6 In fact, we tried several values for d within the interval (1, 10]. We did a simulation for choosing 

d. The simulation showed that as d increases the CPU time decreases but the error starts also 

slightly building up. The value "1.5" for d is found to be a reasonable compromise between the 

CPU time the average error. We have not tested values for d greater than 10. We set m to 5 because 

we observed during simulation that increasing m does not improve the precision while increases 

CPU time. 
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10 xi 10 11 xi 11 

Levy 13 (2) f(x*) = 0, 10 xi 10 Himmelblau (2) f(x*)=0 , 6 xi 6 

Salamon (N) f(x*)=0,     10 xi 10 Trid (N) f(x*)= N(N1)(N+4)/6      

–N2 xi N2 

Adjiman (2) f(x*)= 2.02181  

1 x1 2, 1 x2 1 
Brown(N) f(x*) = 0, 1 xi 4 

Chung Reynolds(N) f(x*)=0,  

100 xi 100 

Dixon and Price(N) f(x*)=0 ,           

 10 xi 10 

Powell Sum(N) f(x*)=0, 1xi 1 Giunta (N) f(x*)=0.0644704,  1 xi 1 

Cigar (N) f(x*)=0, 100 xi 100 Whitley (2) f(x*) =0, 10.24 xi 10.24 

Branin (2) f(x*)=0.397887   

5 x1 10, 0 x2 15 

Trefethen(2) f(x*)=3.3068686474 

10 xi 10 

Egg Crater (N)  f(x*) = 0,   5xi 5 Crowned Cross (2) f(x*) = 0.0001, 10xi 

10 

Leon (N) f(x*)=0 1.2xi 1.2 Sargan (N) f(x*)=0, 100xi 100 
 

 
Damavandi 

 
Cross-Leg-Table 

 
Ackley 

Figure 7. Graphs of a Sample of our Benchmark Functions 

6.1. The ANT-BM Algorithm Performance 

We start our empirical analysis by showing the performance of our algorithm, ANT-

BM, using a set of carefully selected hard functions from Table 1. Table 2 shows these 

functions, their dimensions (N), and the actual minimum (True). It additionally shows the 

performance figures in terms of the average computed minimum and the CPU time (min, 

average, and max) required for computing this minimum in milliseconds (ms).  

Referring to Table 2, our algorithm found the exact global minima for most of the 

functions and very close approximations of the minimum for the rest. (The exact solutions 

are shaded and boldfaced.) Furthermore, the algorithm performed really well in terms of 

CPU time. Observe that for all cases except for Trid (10) and Brown (10), the algorithm 

required a maximum time that is less than "0.85" seconds to find the minimum.  

Table 2. ANT-BM’s Performance in Terms of Solution Precision and CPU 
Time 

Function (N) 

Minimum CPU Time (ms) 

True Average 

Computed 

Min Average Max 

Trid (2) 2 2 28 31 37 

Trid (5) 30 30 249 266 280 

Trid (10) 210 210 9,981 10,001 10,657 

Adjiman (2) 2.02181 2.02180999 502 531 541 

Brown (2) 0 1E20 67 78 92 

Brown (5) 0 3E12 498 506 517 

Brown (10) 0 6E16 4,977 4,995 5,023 

Chung Reynolds (2) 0 0 44 51 59 

Chung Reynolds (5) 0 0 74 77 85 
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Chung Reynolds (10) 0 0 86 87 87 

Dixon and Price (2) 0 1E13 25 31 38 

Dixon and Price (5) 0 2E10 700 701 704 

Powell Sum (2) 0 0 55 63 76 

Powell Sum (5) 0 0 88 92 99 

Powell Sum 10) 0 0 117  128  135 

Giunta (2)  0.064470 0.064470 92  94  97 

Salomon (2) 0 0 61 78 89 

Salomon (5) 0 0 114 125 142 

Salomon (10) 0 0 134 139 151 

Cigar (2) 0 0 50 53 57 

Cigar (5) 0 0 108 111 121 

Cigar (10) 0 0 125 133 143 

Whitley (2) 0 0 91 91 91 

RANA (2) -511.73 -511.7328 9 11 18 

Goldstein Price (2) 3 3 47 62 74 

Booth (2) 0 0 71 95 110 

Easom (2) -1 -1 91 124 131 

Bukin06 (2) 0 4.7E8 90 118 130 

Cross-In-Tray (2) -2.06261 -2.06261 8 9 15 

Egg Holder (2) -959.6407 959.6406 125 356 444 

Damavandi (2) 0 1E14 484 495 500 

CrossLegTable (2) -1 -1 78 83 95 

Schaffer2 (2) 0 0 3 3 3 

Shubert (5) -186.7309 -186.7309 8 12 19 

Matyas (2) 0 0 62 67 78 

Test Tube Holder (2) -10.8723 -10.8723 82 126 187 

Pen Holder (2) -0.963534 -0.963534 35 42 53 

Levy 13 (2) 0 7.6E22  134 245 368 

Himmelblau (2) 0 6.2E31  96 125 145 

Beale (2) 0 1.02E29 119 278 375 

Holder  Table (2) -19.20850 -19.20850 25 28 32 

Branin (2) 0.397887 0.397887 57 63 75 

Trefethen (2) -3.3036868 -3.306868 556 755 812 

Egg Crater (2) 0 0 36 43 57 

Crowned Cross(2) 0.0001 0.0001 14 16 17 

 

Table 3 shows the performance of our algorithm ANT-BM, but for higher dimensional 

functions. The performance is represented in terms of true and average computed global 

minimum and CPU time (minimum, average, and maximum). (Again the exact solutions 

are Boldfaced and shaded.) 

Table 3. ANT-BM’s Performance for Higher Dimensional Functions 

Benchmark 
Global-Minimum CPU-Time (milliseconds) 

True 
Average 

Computed 
Min Average Max 

Function (N) 

 

Alpine 1 

 

 

 

2 0 0 62 67 77 

10 0 0 136 141 157 

100 0 0 310 321 344 

300 0 0 544 666 702 

1000 0 0 1,587 1,802 2,111 

Ackley 

 

2 0 0 10 17 29 

10 0 0 26 32 41 
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100 0 0 91 97 102 

300 0 0 215 219 223 

1000 0 0 398 485 513 

 

 

Sphere 

 

 

2 0 0 30 30 30 

10 0 0 52 58 62 

100 0 0 101 102 103 

300 0 0 205 268 305 

1000 0 0 483 496 508 

Rastrigin 

 

2 0 0 5 6 6 

10 0 0 9 11 11 

100 0 0 20 21 23 

300 0 0 41 42 43 

1000 0 0 104 112 119 

Exponential 

2 -1 -1 4 5 5 

10 -1 -1 7 9 15 

100 -1 -1 17 18 18 

300 -1 -1 30 31 33 

1000 -1 -1 76 77 77 

Griewank 

2 0 0 6 6 6 

10 0 0 11 13 13 

100 0 0 24 26 31 

300 0 0 49 50 50 

1000 0 0 134 135 135 

Levy 

2 0 1.5E32 396 421 442 

10 0 1.4E31 456 501 513 

100 0 1.5E32 500 516 870 

300 0 0 1,351 1,452 1,604 

1000 0 1.5E32 4,060 4,098 4,319 

Schwefel 
2 0 1E12 7 8 9 

10 0 2E6 121 134 162 

Perm 
2 0 2.7E29 188 207 221 

10 0 6E8  68,322 98,012 102,095 

Rotated Hyper-

Ellipsoid 

2 0 0 80 94 121 

10 0 0 265 266 266 

100 0 0 888 950 996 

300 0 0 1,675 1,700 1,861 

1000 0 0 4,670 5,078 5,433 

Sum of Different 

Powers 

2 0 0 53 61 72 

10 0 0 200 200 200 

100 0 0 1,033 1,123 1,369 

300 0 0 2,567 2,755 2,809 

1000 0 0 3,987 4,659 5,001 

Sums of Squares 

2 0 0 37 39 46 

10 0 0 68 71 77 

100 0 0 207 222 235 

300 0 0 411 419 432 

1000 0 0 1,249 1,433 1,497 

Zakharov 

2 0 0 58 63 76 

10 0 0 94 111 125 

100 0 0 215 219 235 

1000 0 0 499 540 632 
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Michalewicz 

2 -1.8013 -1.8013 113 135 147 

5 -4.6876 -4.6876 2,001 2,041 2,106 

10 -9.66015 -9.66015 4,964 5,112 5,555 

Xin-She Yang 02 

2 0 2.7E320 87 111 115 

10 0 1.3E319 145 172 191 

100 0 1.4E318 343 359 366 

300 0 4E318 703 718 719 

1000 0 1.3E317 1,209 1,356 1,704 

Xin-She Yang 03 

2 -1 -1  3 11 16 

10 -1 -1 12 18 22 

100 -1 -1 46 47 47 

300 -1 -1 78 83 94 

1000 -1 -1 218 230 235 

Xin-She Yang 04 

2 -1 -1 3 16 18 

10 -1 -1 15 17 31 

100 -1 -1 31 42 49 

300 -1 -1 78 78 78 

1000 -1 -1 188 199 203 

Drop-Wave 

2 -1 -1 15 16 16 

10 -1 -1 15 16 16 

100 -1 -1 32 44 49 

300 -1 -1 47 53 62 

1000 -1 -1 125 134 141 

Styblinski-Tang 

2 -78.332 -78.332 9 15 16 

10 -391.661 -391.6616 93 94 94 

100 -3916.16 -3916.616 4,912 5,281 5,305 

Leon 

2 0 0 191 223 276 

25 0 0 311 467 901 

100 0 1.97E33 1,987 2,243 2,617 

Sargan 

2 0 0 31 32 34 

50 0 0 102 116 124 

100 0 0 213 235 240 

Cigar 

25 0 0 95 119 121 

100 0 0 196 197 197 

1000 0 0 1,314 1,335 1,352 

Egg Crater 

30 0 0 178 189 206 

100 0 0 472 484 488 

1000 0 0 1,764 1,998 2,021 

 

Generally speaking, the performance numbers in Tables 2 and 3 indicate high 

effectiveness of our algorithm. For instance, the algorithm found exact minimums for 

CrossLegTable and XinSheYang03 functions and a very close approximation of 

the minimum for Damavandi function. The hardness index for these three functions is 

so high according to [8]. In fact, as reported in [8], only 0.25%, 0.83%, and 1.08% of the 

optimization algorithms have succeeded in finding reasonable approximations for the 

global minimum of respectively Damavandi, CrossLegTable, and 

XinSheYang03.Additionally, the CPU time is very reasonable. For instance, the 

average CPU time for the majority of the functions is less than "0.5" seconds (500 ms).   

6.2. Comparative Performance Analysis 

To further analyze the performance of our algorithm, ANT-BM, we compare it with 

many state-of-art algorithms. We call the state of art algorithms with which we compare: 

reference algorithms.  
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We first compare ANT-BM with PSO-3P [16], ELPSO [18], PSO-EO [20], NABC 

[21], and MSFLA-EO [19]. The authors in [17] also provided performance results for a 

large number of algorithms including ABC, MSFLA, GA, LX-PM, SFLA, and others (see 

[17] for more information) and they showed that their algorithm (PSO-3P) performed 

better than these algorithms.  

Tables 4 and 5 show the functions, their dimensions, and the used algorithms (our 

algorithm ANT-BM is shaded for simplifying the comparison). The two tables 

additionally show the performance figures in terms of the average computed minimum 

and the CPU time. (Entries with asterisks "*" represent missing valuesnot reported in 

the original papers.) 

As could be clearly seen in the two tables, our algorithm outperformed PSO-3P and the 

other algorithms in terms of either the solution precision or the CPU time or both. 

Consider, for instance, Ackley function in Table 4. The global minimum for this function 

is "0" (zero). Our algorithm found the exact minimum "0" for all the dimensions while 

PSO-3P found only approximated minimums with an average error ranging from xE05 

to xE16 (where x is some value). The MSFLA-EO algorithm found the exact global 

minimum only for Ackley function with 30 variables. The authors of MSFAL-EO, 

however, reported only the best obtained minimum not the average minimum. In addition, 

it is unclear how the MSFLA-EO's performance will play out for functions with higher 

dimensions (say, higher than 50 variables). 

If we consider the CPU times, we find that PSO-3P is faster than all of the other 

reference algorithms. However, our algorithm, ANT-BM, is not only faster than PSO-3P 

(and by default than the others), but also it requires significantly much less CPU time.  

Table 4. The Performance of Our Algorithm ANT-BM versus PSO-3P and 
Others  

Function N Algorithm Minimum (average) CPU Time (ms) 

Ackley 

10 
ANT-BM 0 32 

PSO-3P 7.56E−05 655 

30 

 

 

 

 

 

ANT-BM 0 43 

PSO-3P 1.40E−05 558 

ELPSO 0.2279 * 

MSFLA-EO 0 * 

PSO-EO 9.5E−04 260 

PSO  2.58 * 

SFLA 2.4 1,830 

50 
ANT-BM 0 66 

PSO-3P 7.99E−15 632 

100 

ANT-BM 0 97 

PSO-3P 8.88E − 16 1,040 

ELPSO 0.2255 * 

1000 
ANT-BM 0 485 

PSO-3P 4.52E−05 555 

Griewank 

10 ANT-BM 0 13 

PSO-3P 0 338 

30 ANT-BM 0 18 

PSO-3P 1.61E5 860 

ELPSO 2.27E–04 * 

MSFLA-EO 0 210 

ABC 4.52E−09 * 

NABC 1.13E−16 * 
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PSO-EO 0 230 

PSO 0 520 

50 ANT-BM 0 22 

PSO-3P 0 646 

MSFLA-EO 0 2,060 

100 ANT-BM 0 26 

PSO-3P 0 589 

1000 ANT-BM 0 135 

PSO-3P 0 617 

Table 5. The Performance of Our Algorithm versus PSO-3P and Other 
Algorithms 

Function N Algorithm Minimum (average) CPU Time (ms) 

Rastrigin 

10 
ANT-BM 0 11 

PSO-3P  0 1,101 

30 

ANT-BM 0 18 

PSO-3P 0 584 

ELPSO 8.6403 * 

ABC 2.9E−09 * 

NABC 0 * 

PSO-EO 0 610 

50 

ANT-BM 0 19 

PSO-3P 1.63E−07 482 

MSFLA-EO 0 9,410 

100 

ANT-BM 0 21 

PSO-3P 8.48E−05 595 

ELPSO 5.5402 * 

1000 
ANT-BM 0 112 

PSO-3P 1.28E−04 400 

Sphere 

 

10 
ANT-BM 0 58 

PSO-3P 4.75E−08 569 

30 

ANT-BM 0 68 

PSO-3P 1.51E–08 560 

ELPSO 5.244E–08 * 

ABC 3.75E10 * 

NABC 4.75E16 * 

50 
ANT-BM 0 76 

PSO-3P 3.03E−08 539 

100 

ANT-BM 0 102 

PSO-3P 1.27E–07 569 

ELPSO 6.035E–05 * 

1000 
ANT-BM 0 496 

PSO-3P 3.64E−08 599 

Zakharov 

10 
ANT-BM 0 111 

PSO-3P 2.33E−05 603 

30 

ANT-BM 0 125 

PSO-3P 8.79E–05 643 

ELPSO 0.0003 * 

50 
ANT-BM 0 170 

PSO-3P 2.11E−05 783 

100 ANT-BM 0 219 
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PSO-3P 8.14E–02 944 

ELPSO 2.5016 * 

1000 
ANT-BM 0 540 

PSO-3P 0 1,268 

 

We secondly compare our algorithm with EOCSO [14]. The authors reported the 

performance numbers for their algorithm (EOCSO) and additionally compared EOCSO 

with other effective algorithms. The performance numbers in [14] showed that EOCSO is 

superior to the other algorithms which EOCSO is compared with. The reported evaluation 

in [14] includes functions with just 30 variables and only one function with 4 variables. 

Table 6 shows the benchmark functions, their dimensions, the performance numbers of 

our algorithm ANT-BM, EOCSO, and other algorithms reported in [14]. In general terms, 

our algorithm performed better than the reference algorithms. In terms of the solution, our 

algorithm was able to find exact minimums for most of the functions. Our algorithm in 

addition, found better approximations of the minimum for the rest of the functions. For 

instance, our algorithm found the exact minimum for the Sphere function (with dimension 

30) while EOCSO produced an approximation of 1.19E201. Consider as another 

example “Schwefel 2.22” function (dimension 30) whose global minimum equals to "0". 

Our algorithm found an approximated minimum of 1.61E299 while the approximated 

minimum by EOCSO is 6.6E116. No need to mention the other algorithms in Table 6 

since their performance is inferior to EOCSO and by default to our algorithm.  

Although [14] did not report time performance, we recorded the CPU time required by 

our algorithm to produce the solutions. 

Table 6. The Performance of Our Algorithm versus EOCSO and Others 

Function[16] N Algorithm 
Minimum CPU Time 

(ms) True Computed 

Sphere 

     

30 

ANT-BM 0 0  68 

EOCSO 0 1.19E201 * 

CSO 0 1.19E55 * 

DE 0 3.1E12 * 

PSO 0 6.78 * 

BA 0 9.4E6 * 

ACO 0 9.9E8 * 

FPA 0 6.3E6 * 

Schwefel 2.22 

 
10 ANT-BM 0 0 64 

30 

ANT-BM 0 4.5E322 106 

EOCSO 0 6.6E116 * 

CSO 0 1.91E43 * 

DE 0 3.04E8 * 

PSO 0 6.59 * 

BA 0 0.012 * 

ACO 0 4.94E5 * 

FPA 0 1.97E7 * 

100 ANT-BM 0 5.56E299 125 

1000 ANT-BM 0 5.7E298 574 

Schwefel 1.2 

10 ANT-BM 0 0 37 

30 

ANT-BM 0 0 51 

EOCSO 0 4.49E51 * 

CSO 0 7E+1 * 

DE 0 15255.14 * 
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PSO 0 4.03E+2 * 

BA 0 2.27E5 * 

ACO 0 11951.1 * 

FPA 0 2.52E2 * 

100 ANT-BM 0 0 119 

1000 ANT-BM 0 0 4,343 

Rosenbrock 

10 ANT-BM 0 0 120 

30 

ANT-BM 0 1.3E149 24,621 

EOCSO 0 9.53E9 * 

CSO 0 26.5 * 

DE 0 25.83 * 

PSO 0 343.6 * 

BA 0 0.196 * 

ACO 0 17.14 * 

FPA 0 2.12E6 * 

100 ANT-BM 0 0 134,100 

1000 ANT-BM 0 4.45E207 361,045 

Rastrigin 
 

 

30 

ANT-BM 0 0 18 

EOCSO 0 0 * 

CSO 0 0 * 

DE 0 47.02 * 

PSO 0 71.56 * 

BA 0 30.84 * 

ACO 0 108.47 * 

FPA 0 15.92 * 

Schwefel 2.26 

10 ANT-BM -4189.829 -4189.82887 1,036 

30 

ANT-BM -12569.487 -12569.48661 14,739 

EOCSO -12569.487 -12474.618 * 

CSO -12569.487 -9133.94 * 

DE -12569.487 -12546.71 * 

PSO -12569.487 -7963.94 * 

BA -12569.487 -8502.89 * 

ACO -12569.487 -6090.03 * 

FPA -12569.487 -10694.82 * 

Ackley 30 

ANT-BM 0 0 43 

EOCSO 0 4.4E15 * 

CSO 0 4.4E15 * 

DE 0 4.5E7 * 

PSO 0 4.91 * 

BA 0 11.60 * 

ACO 0 6.5E5 * 

FPA 0 2.013 * 

Kowalik 4 

ANT-BM 0.0003074861 0.0003074861 588 

EOCSO 0.0003074861 0.0003074860 * 

CSO 0.0003074861 0.000330135 * 

DE 0.0003074861 0.000368256 * 

PSO 0.0003074861 0.000307498 * 

BA 0.0003074861 0.000307834 * 

ACO 0.0003074861 0.001325092 * 

FPA 0.0003074861 0.000307486 * 
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We thirdly compare our algorithm with WOA [28], FMA [23], COA [24], ALC-PSO 

[26], and DE [25]. The authors in [24] reported performance numbers for functions with 

only 30 variables. We confined the comparisons to functions with only 30 variables. 

 Table 7 shows the performance of our algorithm (ANT-BM) and the other algorithms. 

The table shows also the time requirements for our algorithm (ANT-BM) only since no 

reported CPU time for the rest. As the performance numbers show, our algorithm 

performed better than all the other algorithms FMA, COA, ALC-PS and DE especially for 

hard functions F1, F2, and F5. For the other functions, our algorithm's performance was 

equivalent to the others except for "Schwefel 2.22" function, where the algorithms FMA, 

COA, and DE actually performed slightly better than ours.  

Table 7. The Performance of ANT-BM versus Other Algorithms 

Function N Algorithm 
Minimum Time 

(ms True Computed 

Sphere 30 

ANT-BM 0 0 68 

FMA 0 0 * 

COA 0 0 * 

DE 0 0 * 

ALC-PSO 0 1.13E-172 * 

WOA 0 1.41E-30 * 

F1=



n

i

Randomix
1

4 )1,0(   

  -1.28 xi1.28 

30 

ANT-BM 0 4.93E8 1,854 

FMA 0 0.364 * 

COA 0 3.44E5 * 

DE 0 7.7E7 * 

WOA 0 0.001425 * 

Sum of different powers 30 
ANT-BM 0 0 409 

FMA 0 0 * 

Schwefel 2.22 30 

ANT-BM 0 4.5E322 106 

FMA 0 0 * 

COA 0 0 * 

DE 0 0 * 

ALC-PSO 0 1.2E98 * 

WOA 0 1.06E21 * 

Rosenbrock 30 

ANT-BM 0 1.3E149 24,621 

FMA 0 0 * 

COA 0 4.12E4 * 

ALC-PSO 0 3.7E7 * 

DE 0 0 * 

Griewank 30 

ANT-BM 0 0 18 

FMA 0 0 * 

COA 0 0 * 

ALC-PSO 0 0 * 

DE 0 0 * 

WOA 0 0.0000289 * 

F2=


4/

1

N

i

(x4i-3+10x4i-2)
2
 +          5(x4i-1 

 x4i-2)
2 
+  (x4i-2  x4i-1)

4
+ 

           10(x4i-3  x4i)
4
 

30 

ANT-BM 0 0 433 

FMA 0 7.58E10 * 

F3=


4/

1

N

i

(yi
210cos(2yi)+10) 30 

ANT-BM 0 0 187 

FMA 0 0.252 * 
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           xi; if |xi| < 0.5 

         Round(2xi) /2; otherwise            

-5 xi5 
ALC-PSO 0 0 * 

F4=


n

i

ix
1

4
,  -1.28 xi1.28

 

30 
ANT-BM 0 0 821 

FMA 0 0 * 

F5=4x1
2
2.1x1

4
+1/3x1

6
+ 

                                     x1x24x2
2
+4x2

4
 

-5 xi5 

2 

ANT-BM -1.03163 -1.03163 200 

FMA -1.03163 -1.03164 * 

COA -1.03163 -1.0316 * 

WOA -1.03163 -1.03163 * 

Rastrigin 

 
30 

ANT-BM 0 0 18 

FMA 0 0 * 

ALC-PSO 0 7.1E15 * 

DE 0 0 * 

Ackley 30 

ANT-BM 0 0 43 

FMA 0 0 * 

COA 0 8.88E16 * 

ALC-PSO 0 1.69E15 * 

DE 0 4.44E16 * 

WOA 0 7.4043  

Sum of Squares 30 
ANT-BM 0 0 72 

FMA 0 0 * 

 

7. Conclusions and Future Work 

This paper proposed an innovative algorithm for optimization problem. The algorithm 

is based on guided-random search technique augmented with biased mapping. The 

random search is guided by feedbacks. The feedbacks help the algorithm effectively 

identify the promising regions for the next round and dynamically adjust the search 

parameters. The biased mapping provides the algorithm with an effective mechanism that 

not only maps randomly generated candidate solutions to these identified promising 

regions of the variables' domain but also dynamically controls the amount of these 

candidate solutions mapped to these regions. The biased mapping has yet another feature: 

it does not ignore the less promising regions (or marginal regions). 

We tested our algorithm using benchmark functions set. The benchmark functions 

tested compromise a comprehensive testing suite for any optimization algorithm. The 

testing results were really promising. These results showed that our method is both (1) 

effective in finding the exact global minimum (or in some cases a so-close approximation 

for it) and (2) efficient in terms of CPU time. In fact, as presented in the performance 

analysis section (subsection 6.1), our algorithm was able to find exact solutions for very 

hard problems (e.g. XinSheYang03 function) in a short CPU time. We compared our 

algorithm with many state-of-art algorithms that adopt different search techniques. Our 

algorithm performed better than these algorithms in almost all the cases. 

We have two directions for future work. First, we want to use more effective random 

generator than the computer built-in one. Second, we want to extend our algorithm to find 

the best path that leads to the global minimum rather than the minimum value per se. 

  

yi = 



International Journal of Advanced Science and Technology 

Vol.121 (2018) 

 

 

Copyright ⓒ 2018 SERSC Australia   19 

References 

[1] O. Krause, D. R. Arbonès, and C. Igel , “CMA-ES with Optimal Covariance Update and Storage 

Complexity”, 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, 

Spain; (2016), pp. 370378. 

[2] A. Mohamed and H. Sabry, Constrained Optimization Based on Modified Differential Evolution 

Algorithm, Information Sciences, vol. 194, (2012), pp.171208. 

[3] R. H. Abiyev and M. Tunay, Optimization of High-Dimensional Functions through Hypercube 

Evaluation, Computational Intelligence and Neuroscience, vol. 2015, (2015). doi:10.1155/2015/967320 

[4]  J. Zhang, A.C. Sanderson. JADE: Self-Adaptive Differential Evolution with Optional External Archive. 

IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, (2009), pp. 945958. 

[5] Benchmark Functions. https://www.sfu.ca/~ssurjano/optimization.html, January (2018). 

[6] M. Jamil and X.-S. Yang, “A Literature Survey of Benchmark Functions for Global Optimization 

Problems”, International Journal of Mathematical Modeling and Numerical Optimization 

(IJMMNO), vol. 4, no. 2, (2013), pp. 150194. 

[7] A. Gavana, Global Optimization Benchmarks, http://infinity77.net, January (2018). 

[8] E. Cuevas, M. Cienfuegos, D. Zaldívar, and M. Pérez-Cisneros, A Swarm Optimization Algorithm 

Inspired in the Behavior of the Social-Spider, Expert Systems with Applications, vol. 40, no.16, (2013), 

pp. 6374-6384.  

[9]  X. Meng, Y. Liu, X. Gao X., H. Zhang, “A New Bio-inspired Algorithm: Chicken Swarm 

Optimization”, In: Tan Y., Shi Y., Coello C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. 

Lecture Notes in Computer Science, vol. 8794, (2014), pp. 86-94. 

[10]  G. G. Wang, B. Chang and Z. Zhang, A Multi-Swarm Bat Algorithm for Global Optimization, 2015 

IEEE Congress on Evolutionary Computation (CEC), Sendai, (2015), pp. 480-485. doi: 

10.1109/CEC.2015.7256928 

[11]  Y. Zhou, J. Xie, L. Li, and M. Ma, Cloud Model Bat Algorithm, The Scientific World Journal, 

vol. 2014, (2014). http://dx.doi.org/10.1155/2014/237102 

[12]  P. W. Tsai, J. S. Pan, B. Y. Laio, and V. Istanda, “Bat Algorithm Inspired Algorithm for Solving 

Numerical Optimization Problems”, Applied Mechanics and Materials, vol. 148, no. 149, (2012), pp. 

134-137,. 

[13]  W. C. Feng, L. Kui, and S. P. Ping, “Hybrid Artificial Bee Colony Algorithm and Particle Swarm 

Search for Global Optimization”, Mathematical Problems in Engineering Journal, vol. 2014 , (2014). 

[14]  C. Qu, S. Zhao, Y. Fu, and W. He., “Chicken Swarm Optimization Based on Elite Opposition-Based 

Learning, Mathematical Problems in Engineering, vol. 2017, (2017). 

[15]  I. A. Etukudo, “Optimal Designs Technique for Solving Unconstrained Optimization Problems with 

Univariate Quadratic Surfaces”, American Journal of Computational and Applied Mathematics, vol. 7, 

no. 2, (2017), pp. 3336. 

[16] S. Gerardo de-los-Cobos-Silva, M. Á ngel Gutiérrez-Andrade, and et al, “An Efficient Algorithm for 

Unconstrained Optimization”, Journal of Mathematical Problems in Engineering, vol. 2015, (2015).  
[17] A. R. Jordehi, “Enhanced Leader PSO (ELPSO): A New PSO Variant for Solving Global Optimization 

Problems”, Applied Soft Computing Journal, vol. 26, (2015), pp. 401–417. 

[18] X. Li, J. Luo, M.-R. Chen, and N. Wang, “An Improved Shuffled Frog-Leaping Algorithm with 

Extremal Optimization for Continuous Optimization”, Information Sciences, vol. 192, (2012), pp. 143–

151.  
[19] M.-R. Chen, X. Li, X. Zhang, and Y.-Z. Lu, “A Novel Particle Swarm Optimizer Hybridized with 

Extremal Optimization”, Applied Soft Computing Journal, vol. 10, no. 2, (2010), pp. 367–373. 

[20] Y. Xu, P. Fan, and L. Yuan, “A Simple and Efficient Artificial Bee Colony Algorithm”, Mathematical 

Problems in Engineering, vol. 2013, (2013). 

[21] M. Farahani, S. B. Movahhed, S. F. Ghaderi, “A Hybrid Meta-Heuristic Optimization Algorithm based 

on SFLA”, Proceedings of the 2nd International Conference on Engineering Optimization, pp. 18, 

Lisbon, Portugal, Sept. (2010). 

[22] S. Chapra and R. Canale, Numerical Methods for Engineers, 7th edition, McGraw-Hill Education, 

(2014). 

[23] A. Ritthipakdee, A. Thammano, N. Premasathian, and D. Jitkongchuen. Firefly Mating Algorithm 

for Continuous Optimization Problems. Computational Intelligence and Neuroscience Journal, Vol. 

2017, (2017). https://doi.org/10.1155/2017/8034573 

[24] M. Li, H. Zhao, X. Weng, and T. Han, Cognitive Behavior Optimization Algorithm for Solving 

Optimization Problems, Applied Soft Computing Journal, vol. 39, (2016), pp. 199–222. 

https://doi.org/10.1016/j.asoc.2015.11.015 

[25] D. Jitkongchuen and A. Thammano, “A Self-Adaptive Differential Evolution Algorithm for Continuous 

Optimization Problems”, Artificial Life and Robotics, vol. 19, no. 2, (2014), pp. 201–208. 

[26] W.-N. Chen, J. Zhang, Y. Lin et al., “Particle Swarm Optimization with an Aging Leader and 

Challengers”, IEEE Transactions on Evolutionary Computation, vol. 17, no. 2, (2013), pp. 241–258. 

[27] S. Mirjalili, S. M Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a Nature-Inspired Algorithm for 

Global Optimization”, Neural Computing and Applications, vol. 27, no. 2, (2016), pp. 495-513. 

http://infinity77.net/
https://www.hindawi.com/98651463/
https://www.hindawi.com/87248547/
https://www.hindawi.com/79175239/
https://www.hindawi.com/75619485/


International Journal of Advanced Science and Technology 

Vol.121 (2018) 

 

 

20   Copyright ⓒ 2018 SERSC Australia 

[28] S. Mirjalili, A. Lewis, the Whale Optimization Algorithm. Advances in Engineering Software, vol. 95, 

(2016), pp. 51-67. 

[29] Well-known benchmark functions. http://benchmarkfcns.xyz/fcns, (2018). 

[30] M.N.A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A Comprehensive Review of Swarm Optimization 

Algorithms”, PLOS ONE, vol. 10, no. 5, (2015). 

 

 


