
International Journal of Advanced Science and Technology

Vol.115 (2018), pp.149-160

http://dx.doi.org/10.14257/ijast.2018.115.14

ISSN: 2005-4238 IJAST

Copyright ⓒ 2018 SERSC Australia

A Study on the Effects of Visualization Tools on Debugging

Program and Extending Functionality
1

Woo-Chang Shin

Dept. of Computer Science, SeoKyeong University, 16-1 Jungneung-Dong

Sungbuk-Ku Seoul, 136-704, Korea

wcshin@skuniv.ac.kr

Abstract

Nowadays, with the rapid change of the society with IT technology, programming

education for students is becoming more important. However, it is difficult and time-

consuming for students to master programming skills. In particular, object-oriented

languages such as JAVA and C++ language are more difficult to understand, because the

execution flow of the program is not intuitive and the program is executed by interactions

between objects. In this context, program visualization is an effective tool to show the

internal structure and behavior of a program. In the present paper, we introduce an

object-interaction visualization method to help educate the object-oriented programming

concept and the ObjectVisualizer system, which is a dynamic program visualization tool

that implements the method. The results of our experiments also show how the

ObjectVisualizer system works in two major tasks of programming: debugging and

extending functionality.

Keywords: Visualization Tools, Software Education, Object Interaction,

ObjectVisualizer

1. Introduction

In the era of the fourth industrial revolution, represented by major new technologies

such as artificial intelligence, virtual reality, big data, and drones, the importance of

software has increased, and programming education for students has been further

expanded and strengthened [6][13]. In the UK, since September 2014, computing subjects

have been compulsory for students aged from 5 to 16, and Japan has designated

"information" as a required course in high school in 2012. Likewise, India has set

computer science as a prerequisite for elementary and junior high schools since 2010,

while the United States has included "Computational Thinking" courses in high school AP

courses [13][21]. In order to keep pace with this global trend, in Korea, computer subjects

will be implemented as compulsory education in elementary and secondary education

courses nationwide from 2018 [10][11][13].

While the importance of programming education increases, it is difficult and time-

consuming for students to master programming skills. One of the reasons behind this

trend is that students do not fully understand the behavioral mechanisms that occur inside

the computer when the program is run - such as variable states, stack memory changes,

interrupt processes, and memory address references [15].

In general, college students study C language in the lower grades, and then study

object-oriented languages such as C++ and JAVA. C language is still one of the most

used languages, and object-oriented programming is the main paradigm of current

programming language. According to TIOBE, which provides programming language

Received (December 10, 2017), Review Result (January 28, 2018), Accepted (February 2, 2018)

International Journal of Advanced Science and Technology

Vol.115 (2018)

150 Copyright ⓒ 2018 SERSC Australia

share ranking, eight out of the top 10 programming languages, including JAVA that has

the largest market share (15.5%) as of April 2017, are object-oriented languages [23].

Procedural languages such as the C language are less difficult to understand and write

programs in, as the program's execution flow is intuitive. By contrast, an object-oriented

language such as JAVA or C ++ language dynamically changes the execution flow of a

program. In addition, students experience more difficulties in learning the language,

because they need to understand the objects that make up the program, acquire unique

concepts such as Capsulation, Inheritance, and Polymorphism, and understand that the

program is performed by interactions between objects. The latter is difficult to understand

even for professional developers, as the function of the object called by Polymorphism is

determined at runtime.

Program visualization is an effective tool to show the internal structure and behavior of

a program. Rajala [18] defines program visualization (PV) as "a research area that is

visually assisting learners in understanding behavior programs". PV is divided into

Dynamic Program Visualization (DPV) and Static Program Visualization (SPV) [4].

Whereas the DPV tool shows the internal appearance of the dynamic execution of the

program, SPV generally analyzes the program source code and provides the static

structure or information to the user.

In the present paper, we introduce an object-interaction visualization method to help

educate the object-oriented programming concept and the ObjectVisualizer system, which

is a dynamic program visualization tool that implements the method. The results of our

experiments also show how object interaction visualization methods and tools can be used

to perform two major tasks of programming: debugging and extending functionality.

The remainder of the paper is organized as follows.

In Chapter 2, related works are reviewed. In Chapter 3, a system transformation model

for visualization is described. Chapter 4 describes the implementation of the visualization

system, and Chapter 5 examines the effectiveness of the proposed visualization method

for debugging and extending the example program. Chapter 6 summarizes and concludes

this paper.

2. Related Work

Many studies have been conducted to improve the effectiveness of object-oriented

programming education using visualization methods and tools.

First, there are studies that use educational visual programming language and tools.

Lavonen [12] described Empirica Control (EC), a visual programming environment in

which students can develop programs, in the form of flowcharts. Through

experimentation with 34 students, EC proved to be a useful tool to train programming

principles with minimum effort. Furthermore, Jung [8] presented visual programming

methodology and curriculum to efficiently educate students on object-oriented concepts

using Alice, an educational visual programming language. Next, Scratch, a visual

programming language developed by MIT Media Lab, is widely used in basic

programming education [5][14][19]. However, while learning object-oriented language or

environment that is not used in the industrial field may be useful for elementary and

middle school education, it is difficult to apply it to the university education.

Secondly, many studies have been carried out to improve the efficiency of learning by

introducing visualization techniques for difficult areas in programming education, such as

algorithms and data structures. For instance, Osman [17] introduced a visualized learning

environment to help learn the data structure and proved the educational effect of the

environment as an experiment. Furthermore, Byrne [2] found that the effectiveness of the

visualization method was limited in learning algorithms. That is, visualization is useful

for simple algorithms, but ineffective for complex algorithms. Likewise, Kehoe [9]

showed that students can easily access the learning materials by reducing the fearful

feeling about complex algorithms by showing the operation of the algorithm in animation.

International Journal of Advanced Science and Technology

Vol.115 (2018)

Copyright ⓒ 2018 SERSC Australia 151

Thirdly, extensive research is available that seeks to improve students’ understanding

of program operation and increase learning effect by showing them the internal structure

and behavior of the written program using visualization tools. In one of these studies, Tek

[22] divided college students into two groups and experimented with the effects of

visualization tools. Programming training was performed using SPV (static program

visualization) tool in one group and DPV (dynamic program visualization) tool in another

group. The results of this study demonstrated that DPV is more effective than SPV. In

addition, Ben [1] showed that applying the Jeliot 2000 system to the one-year curriculum,

the animation function of the Jeliot system, helps students to learn the abstract concept of

programming. Similarly, Moreno [16] showed that the Jeliot 3 system provides help to

debug programs, though the results suggested that it is difficult to understand the

semantics of program operation through animation.

In this context, the present study seeks to make the following contributions to the field:

(a) It presents a formalized visualization transformation model to show the internal

behavior of object-oriented programs in real time.

(b) It implements a dynamic program visualization tool based on the model.

(c) It validates the effectiveness of the tool in debugging and extending functionality.

3. Transformation Model for Visualization

In order to visualize the object interaction, we developed the ObjectVisualizer tool

which analyzes the source code of the existing program and automatically generates the

source code with the added visualization function (see Figure 1).

Figure 1. Input and Output of Visualization Transformation

A visualization module is added and a part of the source code is modified to display the

interaction of the objects in real time while maintaining the existing program function.

The Aspect-Oriented Programming (AOP) technique can be used to pass relevant

information to the visualization module at the time the object's method is called or the

object is created. However, in the present study, we designed a universal system model to

apply the visualization method regardless of the AOP support in a specific programming

language. This visualization transformation model was modified and extended based on

the results reported by Shin [20]. In order to formalize the visualization transformation

process, the object-oriented system model SYS was defined as follows.

[Definition 1] The object-oriented system model SYS is a structure consisting of the

following elements.

International Journal of Advanced Science and Technology

Vol.115 (2018)

152 Copyright ⓒ 2018 SERSC Australia

[Definition 2] Class C is a tuple constructed as specified below.

The system transformation process for object interaction visualization using the system

model SYS can be expressed by TSYS, TFUNC, and TSTMT functions defined in

[Definition 3], [Definition 4], [Definition 5].

[Definition 3] The visualization transformation function TSYS, which transforms the

system s into a visualization system s', is defined as follows.

If no constructor exists in FUNC, which is a set of member functions of a class, the

default constructor is created in the modified class so that to convey the object creation

information to the visualization module.

[Definition 4] The function TFUNC, which transforms a member function f into a

visualization member function f', is defined as follows.

TFUNC adds entry_st as the first statement of the member function for visualization in

the existing source code and adds exit_st as the last statement. When a return statement is

in the middle or at the end of a function, exit_st is added to the return statement as defined

in TSTMT. An entry_st statement added to the member function notifies the function call

information to the visualization module, and an entry_st statement added to the

constructor transfers the object creation information to the visualization module.

International Journal of Advanced Science and Technology

Vol.115 (2018)

Copyright ⓒ 2018 SERSC Australia 153

[Definition 5] The TSTMT function to analyze the statements, as well as to modify and

insert the code for visualization is defined as follows.

TSTMT reads the statements in the existing source code and adds or changes the code

according to some visualization conditions. If the existing statement is a return statement,

TSTMT adds an exit_st statement before the return statement that tells the visualization

module that the function is to be returned. If there is a method call or an object creation

expression in the return statement, TSTMT separates these expressions from the return

statement and adds an exit_st statement in-between.

return new ValueExpression(intVal); ⇨

ValueExpression expr01 = new ValueExpression(intVal);

ObjectVisualization.exitMethod(); // exit_st

return expr01;

Figure 2. Conversion of a Return Statement Containing Method Calls

If the 'association' relationship between objects is generated as a result of executing a

statement, it is transmitted to the visualization module. The isLinkStatement(st) in

[Definition 5] confirms whether the 'association' relation is created. If st is an assignment

statement that assigns a value to a member variable, and the value is a reference, an

'association' relation between the object of the member variable and the object specified

by the reference value is created.

public class BinaryExpression extends
Expression {

public BinaryExpression(Expression
left, Expression right){

this.left = left;
this.right = right;

}
protected Expression left;
protected Expression right;

}

⇨

public class BinaryExpression extends Expression {
public BinaryExpression(Expression left, Expression

right){
ObjectVisualization.newObj(this); // entry_st
this.left = left;
ObjectVisualization.setLink(this, "left", this.left);
this.right = right;
ObjectVisualization.setLink(this, "right",

this.right);
ObjectVisualization.exitMethod(); // exit_st

}
protected Expression left;
protected Expression right;

}

Figure 3. Conversion of Statements that Create an 'association'
Relationship

4. Implementation

The process of transforming source codes for visualization depends on the syntax and

semantics of the programming language. In the present study, we implemented

ObjectVisualizer for JAVA. The development environment of the tools is as follows.

International Journal of Advanced Science and Technology

Vol.115 (2018)

154 Copyright ⓒ 2018 SERSC Australia

 Java Development Kit v1.8

 Eclipse Neon 2

 Jung Graph Library v2.1.1 [8]

 JavaSymbolSolver v0.5.1 [7]

 Sample Code: BWSCALC [3]

BWSCALC-VISUAL was created by converting the sample program BWSCALC

using ObjectVisualizer. Figure 4 shows the visualization of the initial interaction between

objects in the BWSCALC-VISUAL program.

Figure 4. Visualization Screen of the Transformed Program

Although the main0 function is not an object, it is objectified in terms of the program

starting point and is expressed on the visualization screen. When an object has a reference

to another object, it is represented by a dotted line between objects on the visualization

screen, and the reference variable name is indicated by the line label.

As shown in Figure 4, the Calculator object has references to the BasicTokenizable

object and the SuccessParser object, and the reference variable names are 'tokenizer' and

'parser', respectively. Function calls are represented by solid lines. In Figure 4, main()

invokes evaluate() of the Calculator object ("0: evaluate") and the Calculator object calls

its own function parse() ("1: parse"), then Calculator.parse() Calls the parse() function of

the SuccessParser object ("2: parse"). With the execution of the program, the interaction

between these objects is animated in real time (with some time delay) with the execution

of the program.

When an object is rendered on the visualization window, its name is basically

"class_name@address". However, while this makes it possible to distinguish objects from

each other, their meaning is difficult to understand. On the visualization window, the

name of an object is found by using the Object.toString() function. Thus, the developer

can override the toString() function to change the name of an object into a more

understandable string.

As shown in Figure 5, there is a SubstractionExpression object with two

ValueExpression objects as left and right member variables.

When displaying ValueExpression objects on the visualization screen, it is more

convenient for the user to understand the objects, such as "ValueExpression(7)" and

"ValueExpression(2)", which include the value of the object in the name, rather than

display it in the form of "ValueExpression@3564a6bd", "ValueExpression@3564a6d0".

Figure 5. Changing the Name of an Object through toString() Overriding

International Journal of Advanced Science and Technology

Vol.115 (2018)

Copyright ⓒ 2018 SERSC Australia 155

5. Experiments

In this section, we will examine the effects of object interaction visualization methods

on two major tasks of programming, debugging and extending functionality, through

experiments.

A total of 30 computer science students in programming classes were randomly

divided into two groups (N= 15), the normal group and the visualization-tool group. The

normal group was tested on two tasks without visualization tools. By contrast, the

visualization-tool group was tested using the visualization tools. Before starting the test,

the visualization-tool group was briefed on how to use visualization tools.

5.1. Experiment on Debugging

For the debugging experiments, we modified the sample program BWSCALC to insert

a logical error. That is, when the expression "-5-3" was calculated, a wrong calculation

value "2" (rather than the correct answer "-8") was output.

The normal group was given the source code of BWSCALC, and the visualization-tool

group was given the source code of BWSCALC-VISUAL generated by ObjectVisualizer.

Both groups had no prior knowledge of the source code and were instructed to resolve the

error within a set time frame. The normal group solved the problem using code review

and debugging-mode in Eclipse, the JAVA development environment. By contrast, the

visualization-tool group solved the problem using visualization tools along with code

review and debugging-mode.

When the students in the visualization-tool group executed BWSCALC-VISUAL, the

interaction of the program's objects was shown in animation in the visualization window

(see Figure 6). For the expression "-5-3", SuccessParser parsed the values used in the

expression into ValueExpression objects.

Figure 6. Visualization Screen for the Debugging Experiment

Many students in the visualization-tool group noted that, in Figure 6, the first value of

the two ValueExpression values included in the SubstractionExpression was 5 instead of -

5. They said that they were able to identify the problem with parsing the ValueExpression.

The results of the students' tests were scored from 0 to 100 points according to the

progress of the debugging.

Two students in the normal group and five students in the visualization-tool group

successfully solved the task. The null hypothesis and the alternative hypothesis for the test

are as follows.

International Journal of Advanced Science and Technology

Vol.115 (2018)

156 Copyright ⓒ 2018 SERSC Australia

Thereafter, independent sample t-test analysis was performed on the test results of the

two groups (see Table 1 and Figure 7).

Table 1. One-tailed t-test Results for the Debugging Experiment

Group N Mean Std. Dev. df t p(T<=t)

Normal group 15 30 32.2933
26 -1.7225 0.0484

Visualization-tool group 15 53.33 41.3464

Figure 7. The Obtained t-value on the Debugging Experiment

The average score of the normal group was 30, and the average score of the

visualization-tool group was 53.33. The degree of freedom was 26, and the critical value

of t was -1.7225.

As shown in Figure 7, the left tail area at t=-1.7225 was 0.0484 (p<0.05). Therefore,

the null hypothesis H0 had to be rejected. In other words, the results support the

conclusion that using the visualization tool at the significance level of 0.05 is more

effective in debugging.

5.2. Experiment on Extending Functionality

The sample program BWSCALC supports '+' and '-' operations in arithmetic operations,

but does not support '*'(multiply) and '/'(divide) operations. After informing the normal

group and the visualization-tool group about this issue, the two groups were assigned the

task of extending the function so that the program could perform '*' operation.

When the BWSCALC-VISUAL program calculated "5*3", a message informing the

occurrence of the exception was displayed. In addition, the visualization screen showed

what error occurred at a certain point (see Figure 8).

In Figure 8, after creating a ValueExpression object by parsing '5', the problem

occurred in the parse() function of SuccessParser when reading the operator '*'.

Figure 8. Visualization Screen when Performing the Multiplication Operation

International Journal of Advanced Science and Technology

Vol.115 (2018)

Copyright ⓒ 2018 SERSC Australia 157

In the sample program, BinaryExpression is a class that represents binary formulas.

There are AdditionExpression (that represents addition formulas) and

SubstractionExpression (that represents substraction formulas) classes inherited from

BinaryExpression.

After the students figured out this program’s structure, they could add a multiplication

ability to the program by creating a MultiplicationExpression class and modifying the

program to interpret '*' symbols in SuccessParser.parse(). While students easily

understood that the MultiplicationExpression class was needed, it was difficult to modify

the code so that '*' symbols could be interpreted. Actually, the code modification was not

necessary in SuccessParser.parse(), but it was necessary to modify the code in

BasicTokenizable.tokenize() that generates tokens.

The results of the students' tests were then scored from 0 to 100 points according to the

progress of the task of extending the function. Overall, 5 students in the normal group and

6 students in the visualization-tool group successfully solved the task.

The null hypothesis and the alternative hypothesis for the test were set up identically to

the description in Section 5.1. The results of the independent sample t-test analysis for the

two groups are shown in Table 2 and Figure 9.

Table 2. One Tailed t-test Results for the Extending Software Features
Experiment

Group N Mean Std. Dev. df t p(T<=t)

Normal group 15 42 44.59
28 -1.0340 0.1550

Visualization-tool group 15 58.67 43.69

Figure 9. The Obtained t-value on the Extending Software Features
Experiment

The average scores of the normal group and the visualization-tool group were 42 and

58.67, respectively. The degree of freedom was 28, and the critical value of t was –1.0340.

As shown in Figure 9, the left tail area of t=-1.0340 was 0.1550 (p<0.05) Therefore, the

null hypothesis H0 could not be rejected. In other words, it is difficult to conclude that

using the visualization tool at the significance level of 0.05 is more effective in extending

program functionality.

Although the visualization-tool group had a higher average score than the normal

group, the reason(s) behind this pattern can be explained as follows.

 While it is important to find out where the problem is occurring in debugging, it is

important to integrate the new code into the existing code for the function extension.

 The sample program source code is so small that it does not pose any difficulty to

understand the code with the code review.

International Journal of Advanced Science and Technology

Vol.115 (2018)

158 Copyright ⓒ 2018 SERSC Australia

In conclusion, while the proposed visualization tool shows great strengths in debugging

work to find out the problems of the existing code, it does not show significant strength in

adding new functionality in small programs.

6. Conclusions

In the present paper, we introduced object visualization method that helps to educate

object-oriented programming concept and ObjectVisualizer system, which is a DPV tool

that implements it. The ObjectVisualizer animates the behavior of the program's internal

objects simultaneously with the execution of the program. In our experiments, we also

demonstrated that the visualization tool is effective in debugging and extending

functionality. Specifically, our results suggest that the proposed visualization tool is

helpful in debugging tasks to find problems, but is less effective in terms of providing

meaningful help in extending new functionality in small programs.

Future research would involve is changing the visualization system implemented in a

stand-alone system into a plug-in module of eclipse, so that the visualization function can

be used in real time without the transformation process.

Acknowledgments

This Research was supported by SeoKyeong University in 2016.

This paper is a revised and expanded version of a paper entitled “Development of an

Object Interaction Visualization Tool” presented at 2017 1st International Workshop on

Cultural and Technological Exchange and Mutual Development of The Pacific Rim

Countries, Cheonan, Korea, December 16-17.

References

[1] R. B.-Bassat Levy, M. Ben-Ari and P. A. Uronen, “The Jeliot 2000 program animation system”,

Computers & Education, vol. 40, no. 1, (2003), pp. 1-15.

[2] M. D. Byrne, R. Catrambone and J. T. Stasko, “Evaluating animations as student aids in learning

computer algorithms”, Computers & Education, vol. 33, no. 4, (1999), pp. 253-278.

[3] https://github.com/brian-w-smith/bwscalc, (2017) June 5.

[4] S. Diehl, “Software visualization: Visualizing the structure, behaviour, and evolution of software”,

Springer, Berlin, German, (2007).

[5] B. M. Hill and A. Monroy-Hernández, “The cost of collaboration for code and art: Evidence from a

remixing community”, Proceedings of the ACM Conference on Computer Supported Cooperative Work

(CSCW '13). San Antonio, Texas, USA, (2013), pp. 1035-1046.

[6] S.-m. Hong, Y.-j. Lee, J.-h. Kim, K.-h. Son and M.-n. Jung, “A study to Train Human Resources and to

Support Their Employment and Entrepreneurship for New Future Industries”, Science and Technology

Policy Institute, Korea, (2016).

[7] https://github.com/javaparser/javasymbolsolver, (2017) June 5.

[8] http://jung.sourceforge.net, (2017) June 5.

[9] C. Kehoe, J. Stasko and A. Taylor, “Rethinking the evaluation of algorithm animations as learning aids:

an observational study”, International Journal of Human-Computer Studies, vol. 54, no. 2, (2001), pp.

265-284.

[10] S. Kim and J. B. Chae, “Trend Analysis of Educational Programming Language and Teaching-Learning

Examples”, KERIS Issue Report RM 2014-25. Korea Education and Research Information Service,

(2014).

[11] K.-h. Kim, “2015 Revised Curriculum The right direction of software education and its case study”,

Seoul Education, Seoul Education Research & Information Institute, vol. 226, (2017).

[12] J. M. Lavonen, V. P. Meisalo, M. Lattu and E. Sutinen, “Concretising the programming task: A case

study in a secondary school”, Computers & Education, vol. 40, no. 2, (2003), pp. 115-135.

[13] C.-y. Lee, “Special Report: Obligatory of elementary and middle school s/w education and foster digital

human resources, Promotion and prospects”, Edzine, Autumn, Korean Educational Development

Institute, vol. 41, no. 3, (2014).

[14] M. Marji, “Learn to Program with Scratch”, San Francisco, California: No Starch Press, (2014), pp. xvii,

1-9, 13-15.

https://github.com/brian-w-smith/bwscalc
https://github.com/javaparser/javasymbolsolver

International Journal of Advanced Science and Technology

Vol.115 (2018)

Copyright ⓒ 2018 SERSC Australia 159

[15] Y. Miyadera, K. Kurasawa, S. Nakamura, N. Yonezawa and S. Yokoyama, “A real-time monitoring

system for programming education using a generator of program animation systems”, Journal of

Computers, vol. 2, no. 3, (2007), pp. 12-20.

[16] A. Moreno and M. S. Joy, “Jeliot 3 in a demanding educational setting”, Electronic Notes in Theoretical

Computer Science, vol. 178, (2007), pp. 51-59.

[17] W. I. Osman and M. M. Elmusharaf, “Effectiveness of combining algorithm and program animation: A

case study with data structure course”, Issues in Informing Science and Information Technology, vol. 11,

(2014).

[18] T. Rajala, M.-J. Laakso, E. Kaila and T. Salakoski, “Effectiveness of program visualization: A case

study with the ViLLE tool”, Journal of Information Technology Education: Innovations in Practice, vol.

7, (2008), pp. 15-32.

[19] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E.

Rosenbaum, J. Silver, B. Silverman and Y. Kafai, “Scratch: Programming for All”, Communications of

the ACM, (2009) November.

[20] W.-c. Shin, “A Study on Object-Oriented Programming Education using Visualization Method”, Journal

of The Korean Association of Information Education, vol. 21, no. 5, (2017) October, pp. 557-565.

[21] J.S. Sung and H.C. Kim, “Analysis on the International Comparison of Computer Education in Schools”,

The Journal of Korean Association of Computer Education, vol. 18, no. 1, (2015), pp. 45-54.

[22] Tekdal, “The Effect of an Example-Based Dynamic Program Visualization Environment on Students’

Programming Skills”, Educational Technology & Society, vol. 16, no. 3, (2013), pp. 400-410.

[23] TIOBE Index, https://www.tiobe.com/tiobe-index/, (2017) June.

Author

Woo-Chang Shin, he received the Ph.D. degree in computer

engineering from Seoul National University in 2003, Republic of

Korea. Currently he is a Professor at Department of Computer

Science, SeoKyeong University. His research interests include

software development methodology, software modeling, software

testing, and formal specification.

International Journal of Advanced Science and Technology

Vol.115 (2018)

160 Copyright ⓒ 2018 SERSC Australia

