
International Journal of Advanced Science and Technology

Vol.114 (2018), pp.35-48

http://dx.doi.org/10.14257/ijast.2018.114.04

ISSN: 2005-4238 IJAST

Copyright ⓒ 2018 SERSC Australia

Software Education Model for Non-major Undergraduate

Students using DBSEM
1

Kil Young Kwon1 and Won-Sung Sohn2*

1Dept. of Family Medicine, Eulji General Hospital, Hagye-Dong 280-1,

Hanguelbiseok-street 68, Nowon-Gu, Seoul, 139-872, Korea
2Dept. of Computer Education, Gyeongin National University of Education,

Incheon, Korea

*sohnws@ginue.ac.kr

Abstract

In general, block-based programming tools have been used effectively in basic

programming courses for undergraduate undergraduates [4-5]. Despite the advantages

of block-based programming tools, however, unexpected issues have arisen in the process

of applying this to untrained college students. In the educational field where the

philosophy and purpose of the programming education are not understood accurately, the

purpose of the script coding transformed into the learning of the contents Author ware

rated with scenario implementation and the game design.

In this study, we propose a design based software education model (DBSEM) to

provide optimized programming education to non - traders in order to solve this problem.

In this model, we define core modules and concept modules that are the core of

computational thinking and include multi-level teaching and learning strategies

consisting of prototype design and coding exercises using a design thinking strategy. As a

result, non-major undergraduates can acquire basic knowledge of computer

programming more easily and can develop core competence in computing thinking in the

course of programming using block-based coding tools. In addition, this study developed

a curriculum based on DBSEM model and includes core module based conceptual

learning, UX based prototype design, and block- based scripting (coding) practice based

on 15 weeks’ curriculum.

The proposed model has been applied to 312 non-major undergraduate students for the

past 8 years. The analysis result of the proposed evaluation tool developed by the present

research team has resulted in the final stage 3 level (good). As a result, non - technical

undergraduates were able to shape the concept of programming fundamentals more

firmly and to develop core competencies of computing thinking through programming

practice. The proposed research method can easily apply to any adult who lacks the

athletic knowledge of computer science.

Keywords: SW Education, Programming, Scratch, Code Quality, Design thinking

1. Introduction

In 2015, the revised elementary and secondary curriculum has designated SW

education as an essential subject in the secondary education field since 2018, and

interest in programming education is increasing in the field of actual education. In

addition, computing education for new undergraduates is spreading at home and

abroad [1-2].

Received (November 25, 2017), Review Result (January 27, 2018), Accepted (February 4, 2018)
* Corresponding Author

International Journal of Advanced Science and Technology

Vol.114 (2018)

36 Copyright ⓒ 2018 SERSC Australia

In general, block-based programming tools [3] have been used effectively in basic

programming courses for undergraduate undergraduates [4-5]. Despite the

advantages of block-based programming tools, however, unexpected issues have

arisen in the process of applying this to untrained college students. In the field of

education where the philosophy and purpose of programming education are not

understood accurately, the purpose of script coding transformed into the learning of

contents authoring tools such as tool learning and scenario making and game

authoring using it [6].

Also, top-level block instructions, which are characteristic of block-based

programming tools, are represented by visual attributes of programming elements.

Therefore, to improve computational thinking [7-13], which is the purpose of

traditional programming education, it is necessary to surface the function of

abstracted blocks.

In this study, we propose a design based software education model (DBSEM) to

provide optimized programming education to non - traders in order to solve this

problem. In this model, we define core modules and concept modules that are the

core of computational thinking and include multi-level teaching and learning

strategies consisting of prototype design and coding exercises using Design

Thinking strategies. As a result, non-major undergraduates can acquire basic

knowledge of computer programming more easily and can develop core competence

in computing thinking in the course of programming using block - based coding

tools. In addition, this study developed a curriculum based on DBSEM model and

includes core module based on conceptual learning, UX based prototype design, and

block- based scripting (coding) practice based on 15 weeks curriculum.

The proposed model has been applied to 312 non-major undergraduate students

for the past 8 years. The analysis result of the proposed evaluation tool developed

by the present research team has resulted in the final stage 3 level (good). As a

result, non - technical undergraduates were able to shape the concept of

programming fundamentals more firmly and to develop core competencies of

computing thinking through programming practice. The proposed research method

can easily apply to any adult who lacks the athletic knowledge of computer science.

2. Related Works

The effect of programming education is to promote computational thinking and

has been widely spread by Professor J. Wing's advocacy. Compared to the theory

related to the existing programming education, Prof. J. Wing's differentiating

definition is that 'computing thinking' is defined not as the thinking power needed

for IT majors but as literacy essential for every kind of elementary and middle

school students like reading and writing, And the direction of the future. The

practice of defining and disseminating computational thinking has recently been

very diverse. In particular, the inclusion of Computing as a regular course in k-12 in

the UK in 2015 has also had a major impact on the United States and Korea. At the

center of these various efforts, the development of scratch, a block-based coding

tool, has had a great impact [1,11].

Block-based programming tools based on 'Tinkering' [14-15] or puzzle metaphor

[16] abstract the programming grammar to the top level and transform it into a script

using visual cues called blocks. Since the command blocks abstracted at the top

level are executed only in the combination of the same attributes (time, function,

etc.), unlike a general programming language, grammatical errors related to code

generation do not occur originally. Blocks the functional classification of blocks

based on color attributes and the clarification strategy of logical relations using

visual attributes of blocks provide a recognition process and an affordance effect

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 37

that is far superior to existing programming languages, it is possible to write [16]. In

addition, the functional classification of blocks based on color attributes and the

clarification strategy of logical relations using visual attributes of blocks provide a

recognition process and affordance effect, which are much higher than existing

programming languages, so that scripts can be written at various ages. [16]. Alice

[5], Scratch [14], Snap! Block-based programming tools such as [17] and Blockly

[18] are actively used not only as introductory lectures for undergraduate students

[2] but also for beginners' coding introductory education [11,15] And has

contributed greatly to the popularization of SW education.

On the other hand, the biggest difficulty in the block-based programming

education field is to derive the computational thinking ability items of the blocks

embedded in the interface, and various studies have conducted to define and

evaluate them. In general, we quantify the number of significant blocks created by

scratches to evaluate the quality of programming output or suggest a script

evaluation rubric related to design script, and interface. Michal Armoni and Moti

Ben-Ari [19,20] analyzed the concept of computer science contained in Scratch in

eight items and developed test items and evaluation items for qualitative evaluation

in order to evaluate conceptual understanding of each area.

3. Designed based Software Education Model

In this study, we developed a design-based teaching-learning model (DBSEM) to

apply effective software education to undergraduate students as shown in Figure 1.

Figure 1. Teaching-Learning Model for Software Education (DBSEM)

3.1. Computational Thinking Core Module

Computational thinking has been applied by Professor Seymour Papert in 1980

[21] and 1996 [22] and has been very effective in solving complex large-scale

problems using computational thinking in various fields and improving efficiency.

Professor J. Wing refers to computing thinking as a universal thinking and

International Journal of Advanced Science and Technology

Vol.114 (2018)

38 Copyright ⓒ 2018 SERSC Australia

technology that not only computer scientists but also computer scientists can learn

and use, and it is the basic literacy such as reading, writing, and computation. I am

convinced. Computational thinking is based on the basic concepts of computer

engineering, solving problems, designing systems, and securing the ability to

understand human behavior fundamentally [7-8].

These thinking have had a major impact on the introduction of public education

in the UK in 2014 and have led to major changes in educational policies in advanced

countries such as the United States, France, China, and Japan. The above

phenomenon has also had a great impact on the field of the university. Various

efforts have introduced basic principles of programming and the basics of computer

science to fresh undergraduates, especially non-major undergraduate students. In

this process, it is desirable to form a conceptual knowledge so that non-technical

undergraduate students can develop a computing thinking, and prepare a place for

practical training.

In this study, we define a core module to improve computing thinking and

consider it as a conceptual reference point of the proposed teaching-learning model

as like below Table 1.

Table 1. Concepts and Definitions of Computation Thinking in DBSEM’s
Core Module

Concept Description

Abstraction Identifying and extracting relevant information to define main

idea(s)

Automation Design heuristic methods to diminish repetitive tasks using their

own algorithms

Algorithm design Reformulating the problem into a series of ordered steps

Data analyze and

management
Logically organizing and analyzing data to design with finding

patterns or developing insights

Decomposition Breaking the problem down into smaller parts

Parallelization Identifying, analyzing, and implementing possible solutions with

simultaneous processing for achieving efficient and effective

steps and resources

Pattern analyze and

recognition
Creating and observing models, rules, principles, or theories of

observed patterns to test predicted outcomes

Problem solving Approaching the problem using programmatic thinking

techniques such as iteration, symbolic representation, and logical

operations

Simulation Developing a model to imitate real-world processes with

prototype with Design-thinking methods

3.2. Concept Module

The key to computing thinking is not programming, but conceptualization. One of

the topics of computer engineering's subtopics is computer programming. Thinking

like a computer engineer requires a very abstract and conceptual thinking logic than

computer programming [7-8]. Therefore, the ultimate goal of programming

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 39

education should be to achieve the conceptualization of computing thinking. To

convey this to non-technical undergraduates, it is necessary to define concrete and

logical modules to achieve the educational purpose.

Table 2. Description of Programming Concept Module in DBSEM for
Scratch

Items Descriptions Scratch’s Blocks

Command
-Block stacking strategies to make

command of script
Most cases

Parameter
-Understanding of argument to return

value

Make a Block:
Add number, string,

Boolean, text

Variable -Value, reference, scope Make a Variable

Trigger -Event handling
Events blocks: when,

broadcast

Conditional

Statement
-If then, If then else Control: if then else

Iteration -Repeat, forever, wait until, repeat until Control: repeat until

Data Type -Boolean, number, string
Weakley-typed script

language

Input &Output
- keyboard/Mouse Input/output,
Designing Interactions

When key pressed

Data Structure -Data control using List Make a List

Concurrency
-Understanding of multi-threading using

event handler
Broadcast

Procedures
-Making subroutine, Reusing of

functions, Controlling of parameters

using Make a Bloc
Make a Block, define

In this study, we defined a concept learning module based on the 'core module'

described above. It does not at simply technical education of programming, but it

aims at acquiring basic concepts of computing thinking through programming,

designing strategy for problem- solving, and finally, developing capability as

implementation result. Especially, this study assumes scratch based learning, a

block - based coding tool, and defines three modules: a programming module, a

complex module, and a functional module. The programming module intended to

apply the programming elements contained in the scratch to the teaching and

evaluation process, and to prevent the block-based coding tool from misrepresenting

the content authoring training rather than programming education. Table 2 shows

the results.

Computational thinking does not aim at learning simple programming skills, but

it is ultimately purposed at acquiring the ability to define the problem and to find

the best solution by performing optimal algorithmic thinking to solve it. This goal

embodies in the process of designing the abstraction strategy for problem solving by

applying the above-mentioned programming conceptual elements as a foreground

and applying it in a complex way. To do this, we define the complex module to

solve the following problem-solving ability as shown in the following Table 3.

International Journal of Advanced Science and Technology

Vol.114 (2018)

40 Copyright ⓒ 2018 SERSC Australia

The final step in the conceptual learning process is to derive a project-based

output. In this process, it is essential that the learning process to form and

conceptualize computing thinking and the development process to embody it are

essential. The results of the development include algorithms for problem definition

and resolution based on programming thinking, as well as fusing elements such as

creative scenario design and aesthetic capabilities and functionality. In the present

study, these factors are defined as functional modules as shown in the following

Table 4 and proposed as detailed modules of concept learning.

Table 3. Description of Composited Concept Module

Items of composited

module
Descriptions

Algorithms
- problem solving strategies with computer algorithms

- create several conclusions

Divide & Conquer
- divide of instance with top-down/bottom-up techniques

for problems solving

Interaction Design
- interaction design with dynamic data input, attribute of

sprite

Table 4. Description of Functional Module

Items of functional

module
Descriptions

Creativity - level of contents story and scenario

Aesthetics
- multimedia functions and customizing of scratch object

for the aesthetics

Functionality - functionality of contents

Level of completion
- story structure with several path of scenario

- options for user selection

3.3. Prototype Design Module

In addition to theory learning, design and development processes are required to

deepen understanding of concept learning. However, it is not desirable to demand or

expect a high level of learning because the level of exposure to basic computing

theory is very low for undergraduate students. At the same time, deploying students

to the process of developing a coding project in this environment can further

degrade their immersion and interest in learning. In reality, it is a reality that such

problems are frequently occurring in subjects such as programming and CS 501 that

operated in college liberal arts [6].

This module based on the widely used models in design thinking and HCI, and

can used to verify the hypothesis by designing and developing problem analysis and

requirements. Especially, a strategy can implement its algorithm easily and

efficiently by using paper prototype or prototype design tool based on low-fidelity

without using difficult programming or coding tools in problem analysis and

algorithm implementation. A prototype generates a model during the initial

development of a system or development result. It is not perfect but used very

effectively in the logic design process of the system. Therefore, this strategy intends

to promote more competence to conceptualize and abstract the basic theories of

computing thinking expressed in conceptual learning and to provide pre-learning

functions of full-scale coding practice. It is possible to provide advantages of the

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 41

following example shows a low-level low-fidelity prototype as shown in Figure 2

and a high-fidelity prototype tool as shown in Figure 3 for the topic Understanding

Interactive Programming.

Figure 2. An Example of Low-fidelity Prototype Design for Interactive
Programming

Figure 3. An Example of Hi-fidelity Prototype Design for Interactive
Programming

3.4. Coding Module

In this study, the student can define problems through the prototype design

module, specify their own algorithm, and establish the concept. Therefore, the

algorithmic thinking implemented in the concept formulation phase transformed

from the actual coding process to the programming domain. In this paper, we

propose a coding module as shown in Figure 4.

International Journal of Advanced Science and Technology

Vol.114 (2018)

42 Copyright ⓒ 2018 SERSC Australia

Figure 4. Prototype Design Module for Concept Knowledge of
Computing

In the proposed module, we first developed the basic theory embedded in the core

module, thereby activating the computing accident and establishing the knowledge

learned in the prototype module more firmly.

In order to refine the fractional knowledge of the computational thinking formed

through this essential concept learning process, this step needs to implement a

small-scale procedure based on pseudo code for each subject, and based on the

contents of the detailed module of concept learning do. Figure 5 shows an example

of numerical code learning and scratch coding (scripting) for bubble alignment.

procedure bubbleSort(A:list of

sortable items) defined as:

 for each i in 1 to length(A) do:

 for each j in length(A) down to i

+ 1 do:

 if A[j] < A[j - 1] then

 swap(A[j], A[j - 1])

 end if

 end for

 end for

end procedure

Figure 5. A Case of Scripting for Psuedo Code using Scratch:
Case of Bubble Sort

A pseudo- code is a way of describing an algorithm in a common language

without following the grammar of a particular programming language, and it is

readily available to a novice who is not familiar with the programming language.

The ultimate goal of the practice stage is to define the problem using the knowledge

that formed through the basic concepts and practices that have established through

the theories and to present and implement the ideas to solve them. To do this, the

prosoed model is to carry out small-scale (two or three subject-based) projects and

long-term projects for the semester.

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 43

3.5. Evaluation Module

In the proposed model, to evaluate the level of the block script, we developed the

basic concept of programming, the complex concepts about the algorithm and the

problem- solving strategy, and the evaluation items related to the functional

elements (104 items in total). Based on these evaluation items, the block script is

evaluated according to the evaluation criteria shown in the following Table 5. After

completion of the evaluation, the level of the final script is evaluated according to

the script-level calculation model developed by the present inventor [6].

Table 5. Evaluation Criteria of Code Quality

Score 1 Point 2 Point 3 Point 4 Point 5 Point

Definition

Lack of
understanding

basic concept

and level of
implement

Understanding

basic programming

concept

Be above the
average level of

understanding

basic concept and
implement

Excellent in

understanding of

concept and

implement

Fully

understanding of

concept and

implement

Vulnerable Poor Fare Good Excellent

In this study, the score calculated by reflecting the weight on the total evaluation

value derived from 104 evaluation items convert into a percentage of the scale of the

evaluation index, and the level of the programming code (script) is determined

according to the result. The criterion for evaluating the level according to the final

score of such a summed script is shown in Table 6 below. In the proposed method,

the evaluation score is assigned to the 5th step of the code level (5 points scale) (1

point: 1 point to 5 points: 5 points) 2 points include 40%, 3 points for 60%, 4 points

for 80%, and 5 points for 100%. The level is determined according to the final

evaluation result, and the status of the learner is objectively determined according to

the level definition.

Table 6. Five Levels of Code Quality

Levels
Score

Range

Level

describe
Level definition

Level 1 Score < 20 Vulnerable - block composition and basic interaction design

Level 2
20 ≤ Score

<40
Poor

- data processing/control, complicate interaction/

event design

Level 3
40 ≤ Score

<60
Fare - ability of data structure and procedure design

Level 4
60 ≤ Score

<80
Good

- understanding algorithms for problem solving and

designing of complicate interaction

Level 5
80 ≤ Score

<100
Excellent

- fully understanding basic and complicate concept of

programming

4. Curriculum Development and Application

4.1 Curriculum Development

In this study, we developed the curriculum as shown in Table 7 to perform

programming education for undergraduate students. This course consists of basic

theory education for concept learning formation, prototype design for theory

International Journal of Advanced Science and Technology

Vol.114 (2018)

44 Copyright ⓒ 2018 SERSC Australia

practice, and scripting training course using scratch based on DBSEM. In the

conceptual learning stage, we provide basic knowledge of computer science and

programming that plays the role of athletic knowledge. The degree of difficulty can

adjusted variously according to the object. In the prototype stage, we understand the

algorithm for the project that will implemented during the hands-on learning

process, design, and implementation of low-level prototype for this. Finally, in the

course of the lab, we provide an experience to materialize core module theories by

expressing algorithms using scratches and designing various interactions.

4.2. Curriculum Application and Analysis

Table 7. Curriculum of Software Education for Non-Major
Undergraduate Students

Weeks
subject

Concept learning Prototype design Practice

1st
- HCI 101

- Programming Language 101

- Understand command

- Basic of algorithms design

- Basic of Scratch

- Understand UI

2st
- understand of binary

- computation of binary
- design of binary card game

- practice of computational

- Design of ping-pong game

3st
- Introduction of multimedia
- Understand of object

- Geometric pattern design
- Polygon pattern design

- Variable
- Motion drawing

4st
- Animation theory 12

- Understand of MIDI

- Paper prototype

- Cel animation

- Sprites

- Looks/Sound block

5st
- Understand of trigger

- Event programming

- Trigger based game design

- event, condition, action

- Event block

- Understand of UI

6st
- Understand of data
- Understand of variable

- code/decode
- Value, reference, scope

- Variable block
- Science simulator project

7st Midterm exam

8st
- Basic of procedure
- top-down/bottom-up

- top-down/bottom-up
 prototype

- Make a block
- House with procedure

9st
- Problem solving with

programming
- Algorithms with flowchart

- Conditional, Repeat

- Line Tracer project

10st
- Understand of Reclusive
- Understand of Threading

- Fractal with reclusive
programming

- Nesting/Recursion prototype

- fractal scripting
- broadcast block

11st
- String processing
- Interactive programming

- string prototype
- Quiz UI

- Quiz project
- Hangman project

12st - Understand of data structure I - Searching prototype
- List block

- Linear search project

13st - Understand of data structure II - Sorting prototype
- Bubble sort

- Median searching

14st Final project

15st Final exam

In this study, we proposed a teaching - learning model applicable to non-major

undergraduate students using block-based programming tool and develop a

curriculum based on this. The validity of the proposed model is verified by applying

the non-major students in this study to the University of Education.

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 45

The purpose of this study is to investigate the effect of the DBSEM model - based

curriculum of 312 students who took the 'Practical Practice' course of the 3rd year

students of the College of Education between 2008 and 2015. The results are shown

in Table 8 below. Details of the level measurement tool [6] are omitted in this paper.

Table 8. Evaluation and Analysis of Script Quality for the Final Scores
of Students

Category

Evaluation Criteria Level

of

criteria

Level

of

Group Sub Criteria Weight(A) Score(B)
Weighted

Score(AxB)

Code

Quality

Quality

Level

Programming

Concept

Command 0.013 12 0.156 54.67 3

54.77

54.46

Level 3

Parameter 0.007 10 0.070 53.45 3

Variable 0.051 7 0.357 51.69 3

Trigger 0.041 8 0.328 59.02 3

Conditional

Statement
0.090 11 0.990 55.84 3

Iteration 0.088 12 1.056 59.81 3

Data Type 0.028 12 0.336 69.16 4

Input&Output 0.038 10 0.380 58.84 3

Data Structure 0.053 7 0.371 47.21 3

Concurrency 0.055 7 0.385 53.39 3

Procedures 0.059 5 0.295 39.35 2

Advanced

Concept

Algorithms 0.130 6 0.780 41.86 3

46.02
Divide&Conquer 0.128 6 0.768 39.11 2

Interaction

Design
0.073 10 0.730 57.10 3

Contents

Evaluation

Creativity 0.044 10 0.440 58.98 3

59.95

Ascetics 0.029 9 0.261 57.22 3

Functionality 0.029 11 0.319 67.75 4

Level of

Completion
0.044 10 0.440 55.84 3

Sum 1 163 8.462 54.46 3

Table 8 shows the results of applying the measurement model of programming

level to the results of the curriculum based on the DBSEM model of the proposed

study. The weighted conversion score of 8.462 for the final score of 312 final scores

applied to the study was 54.46% of the script level and the result of the final stage 3

level (good) was derived. When analyzing the results of the students in detail, all

items except for the 'procedure' item that recorded at least 2 level (insufficient)

among the concepts of the core module were evaluated as 3 level (good). The

concept of Procedure is not only a technique for writing functions but also a core

concept for algorithm development for problem- solving. These results show that the

results of studying the detailed concepts of the divide & conquer and algorithms

fields of the complex module affect the results. Especially, the concepts related to

the problem- solving strategy (level 2) should be more improvement later.

International Journal of Advanced Science and Technology

Vol.114 (2018)

46 Copyright ⓒ 2018 SERSC Australia

5. Conclusion

In this study, we proposed a design based software education model (DBSEM) for

programming education for the non-major student. The proposed model defines

'core module' and 'concept learning' module, which are the core of computational

thinking ability, and includes prototype design and coating practice based on a

design thinking strategy. In addition, this study developed a curriculum based on the

proposed model and consists of concept learning process, prototype design and

coding practice based on 15 weeks curriculum.

In this paper, we applied the DBSEM - based curriculum to 312 non-major

undergraduate students and analyzed through the evaluation tool developed by our

researchers, and the final stage 3 level (good) results show. As a result, non-major

students were able to shape the basic concepts of programming through the

proposed curriculum and to plan core competencies of computing thinking through

programming practice.

The DBSEM model can be applied effectively for establishing computing

incidents in various fields required in the era of the rapidly changing fourth

industrial revolution. The key concept learning and prototype practice strategies of

the proposed study are easy to learn for any adult who lacks a player knowledge of

computer science, so that he/she can learn not only programming education but also

various fields of SW education such as' physical computing 'and' It can be applied

and applied effectively. In the future, this study will be supplemented with studies

on qualitative satisfaction analysis or learning effect.

Author Contributions

Kil Young Kwon designed experimental model for this research.

Acknowledgments

This paper is a revised and expanded version of a paper entitled ‘Design based

software education model for Non-major Undergraduate Students’ presented at 2017 1st

International Workshop on Cultural and Technological Exchange and Mutual

Development of The Pacific Rim Countries (CuTEMD 2017), December 17, 2017,

Namseoul University, Cheonan, Korea.

References

[1] D. J. Malan and Henry H. Leitner, “Scratch for budding computer scientists”, SIGCSE Bull, vol. 39, no.

1, (2007), pp. 223-227.

[2] S. Mishra, S. Balan, S. Iyer and S. Murthy, “Effect of a 2-week scratch intervention in CS1 on learners

with varying prior knowledge”, In Proceedings of the 2014 conference on Innovation & technology in

computer science education (ITiCSE '14), ACM, (2014), pp. 45-50.

[3] D. Weintrop, “Minding the Gap Between Blocks-Based and Text-Based Programming”, Proceedings of

the 46th ACM Technical Symposium on Computer Science Education, (2015), ACM.

[4] C. Hundhausen, S. Farley and J. Brown, “Can direct manipulation lower the barriers to computer

programming and promote transfer of training?: An experimental study”, ACM Trans. Computer-

Human Interaction, vol. 16, no. 3, (2009).

[5] I. Utting, S. Cooper, M. Kölling, J. Maloney and M. Resnick, “Alice, Greenfoot, and Scratch - A

Discussion”, Trans. Comput. Educ., vol. 10, no. 4, (2010), Article 17.

[6] W. S. Sohn, “A Developing a Model for Measuring of Programming Education for Non-major

Undergraduate Students”, Journal of The Korean Association of information Education, vol. 20, no. 3,

(2016), pp. 293-302.

[7] J. M. Wing, “Computational thinking”, Communications of the ACM, vol. 49, no. 3, (2006), pp. 33-35.

[8] J. M. Wing, “Computational thinking and thinking about computing”, Philosophical transactions of the

royal society of London A: mathematical, physical and engineering sciences, vol. 366, no. 1881, (2008),

pp. 3717-3725.

International Journal of Advanced Science and Technology

Vol.114 (2018)

Copyright ⓒ 2018 SERSC Australia 47

[9] V. Barr and C. Stephenson, “Bringing computational thinking to K-12: what is Involved and what is the

role of the computer science education community?”, ACM Inroads, vol. 2, no. 1, (2011), pp. 48-54.

[10] S. Grover and R. Pea, “Computational thinking in K–12: A review of the state of the field”, Educational

Researcher, vol. 42, no. 1, (2013), pp. 38-43.

[11] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan and A. Millner,

“Scratch: programming for all”, Communications of the ACM, vol. 52, no. 11, (2009), pp. 60-67.

[12] K. Brennan and M. Resnick, “New frameworks for studying and assessing the development of

computational thinking”, In Proceedings of the 2012 annual meeting of the American Educational

Research Association, Vancouver, Canada, (2012), pp. 1-25.

[13] M. Guzdial, “Education Paving the way for computational thinking”, Communications of the ACM, vol.

51, no. 8, (2008), pp. 25-27.

[14] J. Maloney, M. Resnick, N. Rusk, B. Silverman and E. Eastmond, “The Scratch Programming Language

and Environment”, ACM Transactions on Computing Education, vol. 10, no. 4, (2010).

[15] W. Slany, “Tinkering with Pocket Code, a Scratch-like programming app for your smartphone”, Proc. of

Constructionism, Vienna, Aus, (2014).

[16] R. Lister, “Computing Education Research: Programming, syntax and cognitive load”, ACM Inroads,

vol. 2, (2011), pp. 21-22.

[17] B. Harvey and J. Mönig, “Bringing no ceiling to Scratch”, Proc. of Constructionism 2010, Paris, Fr.,

(2010), pp. 1-10.

[18] N. Fraser, Blockly, Google, (2013).

[19] O. Meerbaum-Salant, M. Armoni and M. Ben-Ari, “Learning computer science concepts with Scratch”,

Computer Science Education, vol. 23, no. 3, (2013), pp. 239-264.

[20] O. Meerbaum-Salant, M. Armoni and M. (Moti) Ben-Ari, “Learning computer science concepts with

scratch”, In Proceedings of the Sixth international workshop on Computing education research (ICER

'10). ACM, New York, NY, USA, (2010), pp. 69-76.

[21] P. Seymour, “Mindstorms: Children, computers, and powerful ideas”, Basic Books, Inc., (1980).

[22] P. Seymour, Int J Comput Math Learning, vol. 1, no. 95, (1996).

Authors

Won-Sung Sohn, he received the B.S. and M.S. degrees in

Computer Engineering from Dongkuk University in 1998 and 2000

and the PhD degree in Computer Science from Yonsei University in

2004. From 2004 to 2006. He was a postdoctoral associate in the

Computational Design Laboratory at Carnegie Mellon University. He

is currently a professor at Department of Computer Education,

Gyeongin National University of Education. His research interests

include educational design research, human-computer interaction and

computer education.

Kil Young Kwon, she is currently an assistant professor in the

Department of Family Medicine at Eulji General Hospital and Eulji

University, Republic of Korea. She served as Internship, Resident &

Fellow in the Severance Hospital at Yonsei University College of

Medicine, Republic of Korea from March 2001 to February 2006.

She received a M.S. International Health Science in the department of

Public Health, Yonsei University and Ph.D. Integrated Medicine in

the department of Medicine, Cha University, Seoul, Korea, in 2008

and 2015, respectively.

International Journal of Advanced Science and Technology

Vol.114 (2018)

48 Copyright ⓒ 2018 SERSC Australia

