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Abstract 

A user generally writes software requirements in ambiguous and incomplete form by 

using natural language; therefore, a software developer may have difficulty in clearly 

understanding what the meanings are. To solve this problem with automation, we propose 

a classifier for semantic annotation with manually pre-defined semantic categories. To 

improve our classifier, we carefully designed syntactic features extracted by constituency 

and dependency parsers. Even with a small dataset and a large number of classes, our 

proposed classifier records an accuracy of 0.75, which outperforms the previous model, 

REaCT. 
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1. Introduction 

By virtue of hardware and software developments, computer science (CS) has become 

a popular research discipline over the past several decades. This phenomenon is 

confirmed in academic as well as industry research. The number of papers related to CS 

has been increasing since 1990 based on the statistics of the Association for Computing 

Machinery (ACM) and Institute of Electrical and Electronics Engineers (IEEE) [1], and 

Information Technology (IT) companies are leading the industrial market. Owing to the 

fact that the CS domain is growing explosively, the complexity of software programs is 

steadily increasing, and toolkits such as program languages are also evolving. This fact 

presents some challenges, one of which is the facility of communication between 

developers and users. Developers use explicit language in order for computers to 

understand, whereas users typically speak in abstract forms assuming that they understand 

each other’s context. Therefore, users generally write software requirements using natural 

language, which has certain limitations in its application to computers such as ambiguity, 

over-flexibility, amalgamation, confusion and lack of modularization [2]. These 

limitations have led to the evolution of natural language processing (NLP), which is a 

field concerned with the interactions between computers and humans. If we think of 

software developers as computers, the communication problem can be solved using NLP. 

In the field of software engineering, Dollmann (2016) mentioned that NLP has been 

defined as semantic annotation (SA) in which each word in a software requirement text 

can be annotated with semantic categories. With semantic categories pre-defined by 

researchers, we are able to deal with communication barriers such as ambiguous and 

incomplete expressions. In practice, as long as software requirements are semantically 
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annotated, developers can quickly figure out requirements, or give feedback to users when 

their requirements are incomplete, and again after the users restate their requirements in a 

clear form. Furthermore, developers are able to understand users’ requirements even 

though they are ambiguous. Therefore, the goal of this study is to bridge the 

communication gap between developers and users by using NLP techniques such as 

machine learning methods and semantic categories. Furthermore, our model that 

sensitively designed on this task outperforms the previous model, REaCT [3]. 

 

2. Related Work 

Two representative approaches – the rule-based approach and the statistical machine-

learning (ML) approach – have been adopted for NLP. In general, the rule-based approach 

is a traditional method incorporating domain knowledge, and is used when a large dataset 

could not be involved. The ML approach is a way to leverage the power of statistics, and 

it is used when a large dataset is involved. Both have their respective pros and cons [4]. 

The rule-based approach is easy to understand and maintain because its rules are designed 

on human knowledge; however it is not robust, and it requires considerable human effort. 

In contrast, the ML approach is more robust because it is adaptable and trainable and it 

does not need much human effort; however, it requires a large amount of data and certain 

ML technologies. A distinct difference between the two approaches is that the rule-based 

approach displays explicit action behavior, whereas the ML approach relies on implicit 

action behavior based on features whose weights are updated by the model and the data. 

For example, Palmer (1990) considered taxonomies as explicit thresholds for decision-

makings, whereas Liang (1992) used them as additional features with flexible weights for 

soft decisions. Because the ML approach includes some rules as features to be learned 

from the dataset, the ML approach is more general than the rule-based approach. 

In the NLP domain, there are many different types of tasks including document 

classification, named entity recognition, semantic role labeling, and machine translation. 

The NLP task that is most similar to our problem, SA, is semantic role labeling in terms 

of identifying semantic roles and their arguments in software requirements [3]. Because 

such roles and arguments are too complex in form to be described with explicit rules, 

meaning that there are many exceptions when using a rule list, the current approaches to 

semantic role labeling are mostly based on supervised machine learning models with 

various types of feature sets [7]. Given this knowledge, we adopted an ML approach for 

solving our problems as the previous research did. In order to represent complex 

information, we need to understand other NLP tasks such as parsing, chunking, part of 

speech tagging, and named entity recognition, because for our classifier, we concatenate 

features identified by other NLP classifiers [8]. Hence, it is essential to understand not 

only semantic role labeling but also other NLP tasks for solving our SA problem. 

 

3. Semantic Annotation 

Given the fact that words should be annotated with categories, we consider our SA 

problem as a classification problem with semantic categories; therefore, we use 

supervised ML models. Then, what are the semantic categories? They are represented in 

Figure 1e, and proposed by Dollmann (2016), whose authors manually defined them with 

knowledge of software engineering and frames obtained after examining the entire dataset. 

The authors believed that even though text forms of software requirements can be 

expressed in different ways, they could be grouped into semantic and relevant regions in 

the sentence, such as description and functionality. In other words, a software requirement 

can be semantically decomposed into several categories according to the relevant content. 

For example, component usually refers to a product or system and action represents what 

a component affects. Because some software requirements contain additional or 

refinement descriptions and subordinate clauses, there exist certain types of modifier 
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categories, such as refinement of component and argument of action. A single example of 

a software requirement is presented in Figure 1a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Semantic Category with Syntactic Structure 

Given the semantic categories, the requirement can be semantically annotated as in 

Figure 1b. We can easily understand what the meaning of the software requirement is 

after it is annotated. One linguistic theory suggests that a language is a set of levels of 

representations such as phonemics, morphology and phrase structure [9], which is a 

pervasive approach in NLP today. Given this knowledge, semantic categories can be 

syntactically divided into groups in two ways: based on grammar or hierarchy (Figure 1f). 

With the grammar aspect, the categories are grouped into subject, predicate and object, 

which are the principal components of the sentence. In addition, categories are 

represented by a hierarchical tree structure, where each category is arranged on the basis 

of dependence. For example, sub-object is considered as a head because refinement of 

sub-object is dependent on sub-object, and at the same time, sub-object can be a 

dependent because it depends on object. Head and dependent are usually composed of 

noun or verb and phrase or clause, respectively. Finally, software requirement text can be 

both syntactically and semantically framed, as in Figure 1c. Note that such a frame is 

closely related to results from the sentence extracted by a parser for NLP, but is not 

exactly same. The important thing is that if our classifier is able to understand the frame, 

its performance will increase because of its relevance. Thus, we carefully design elaborate 

syntactic features based on the frame. 

 

4. Our Approach 

Our strategy both to annotate requirements and to improve the previous model involves 

three tackle parts: data, feature and model part. They are not just the essential parts for 

building machine learning pipeline but also the source of prediction errors. Also, they are 

less correlated with each other. When we build a supervised learning classifier, assuming 

that we have mean squared error criterion and irreducible error ε is omitted, the total 

prediction error is defined as  
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where 𝒙𝑖 ∈ ℛ𝑑  is a 𝑑  dimensional feature vector for a certain software requirement 

(Section 4.2), 𝒚𝑖 ∈ ℛ17 is a true label with one-hot encoding composed of 16 semantic 

classes and a noise class, 𝑓(𝒙) is function described by our learned classifier, and 𝑓(𝒙) is 

a true function. The total error is decomposed into bias error and variance error. Bias error, 

as the distance from true function, occurs when the model 𝑓(𝒙) is not sufficient to explain 

the distribution of the dataset and the feature vector 𝒙  is not representative in 

distinguishing all the classes. We decrease the bias error by selecting the appropriate 

machine learning model 𝑓(𝒙)  among various types of models to specific dataset, by 

tuning hyperparameters of the model 𝑓(𝒙), and by designing the representative feature 

vector 𝒙. Variance error arises when the dataset is inherently noise and fluctuant. We deal 

with the high-variance problem by cleaning a noisy dataset and by performing 

normalization to avoid sparsity and collect more representative data. High-variance can be 

solved by model selection and feature engineering as was the high-bias problem, but in 

addition, the data characteristics cause high-variance intrinsically. Note that there is a 

trade-off problem between high bias (i.e. underfitting) and high variance (i.e. overfitting) 

and therefore, we need to find a consensus. Given this common knowledge in machine 

learning research, we build a machine learning pipeline that includes data, feature and 

model part (Figure 2). 

 

 

Figure 2. Machine Learning Pipeline 
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4.1. Data Cleaning and Preprocessing 

Because a text dataset is discrete and sparse, it is important that words that have the 

same stem are grouped into a single representative word, and that low entropy words such 

as unique words and stop-words, are removed. Because our text data, as software 

requirements, have a specific type and form, we performed specific preprocessing during 

data cleaning. For example, redundant but frequent words and phrases such as Hello, Also, 

Hi, In addition, I think, In general, i.e., e.g. were removed. We changed the word, if into 

that when we encountered the pattern, it would be X if. We converted imperative 

sentences into declarative sentences by adding an impersonal pronoun. Some prepositions 

were removed when they were with intransitive verbs. Some special characters such as the 

hyphen and the slash were removed. In the preprocessing step, as general text lowering 

and stemming were executed, but we did not remove stop words because it helped bag-of-

n-gram features (4.2 Feature Engineering). We chose stemming instead of lemmatization 

for higher performance because lemmatization feeds the parser poor text forms. We did 

not perform any text preprocessing for syntactic feature extraction because this may cause 

poor parser performance. This is the reason why we have two types of preprocessing: data 

cleaning and preprocessing. We use the Natural Language Toolkit (NLTK) 2  Python 

library to implement these steps. Data cleaning and preprocessing are important not just 

for mitigating the sparsity problem, but also for improving the performance of 

constituency and dependency parsers, whose outputs are used for syntactic features. 

 

4.2. Feature Engineering 

Our challenge is to train a classifier, and to be able to distinguish a large number of 

classes within a small dataset (5.1 Dataset). Given these conditions, feature engineering is 

considered as the most important step in the pipeline. In general, there are two 

representative insights when designing or selecting the feature set: data appearance and 

domain knowledge, which are included in the check list for solving feature selection 

problems as described in [10]. First, in terms of data appearance some frequent patterns 

exist in the dataset, such as i want to be, it would be nice, job seeker can, the product shall, 

user can, a user, and the product. A bag-of-n-grams provides good representations for 

recognizing these patterns. We build a bag of n-grams with several levels, whose top 10 

words are listed in Table 1. Because all of our features are designed for each word, 2-

gram, as even number, can represent two different features such as left-2-gram and right-

2gram. As bag-of-n-gram features are described by lookup tables, this gives us high-

dimensional and sparse feature vectors. These types of features are useful because most 

expressions used in software requirements are not arbitrary but specific forms to describe 

the purpose of the requirements.  

Table 1. Top10 Word List of n-grams 

1-gram 2-gram 3-gram 5-gram 

the , i , i want , i want to be 

. as a i want to it would be nice to 

to i want be abl to as a user , i 

a want to it would be user, i want to 

, would be the product shall , i want to see 

be the system the system shall a user , i want 

i to the would be nice staff member shall be abl 

of it would a user can nurs staff member shall be 

shall a user to be abl member shall be abl to 

as abl to so that i it would be nice if 
                                                           
2 https://nltk.org/ 
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Second, with domain knowledge representing the syntactic frame as we discussed in 

Section 3, we design elaborate syntactic features by using language resources such as the 

part-of-speech tagger and the constituency and dependency parser. We use the spaCy3 

Python library and Stanford Parser4 for implementing them. With the two parsers, we 

represent a sentence into syntactic features in two ways. Table 2 shows syntactic features 

designed by both parsers. The constituency parser describes a sentence as a tree structure 

based on phrase-structure rules. The depth and width of the tree structure at each word can 

be syntactic positions. Depth is calculated via the number of parents and width through 

the number of siblings on the same level. With this hierarchical property, we design tree-

label bigram feature, which is able to distinguish parent ambiguities. The dependency 

parser represents a sentence not as a tree structure, but by simple relational or dependent 

sets such as nsubj, nmod, and det. For each word, syntactic characteristics are extracted 

such as the part-of-speech tag, and the dependent type. By using the dependent type, 

words are grouped into phrases and clauses. One benefit of dependency over constituency 

is that dependency is used to not only group words but also recognize words, phrases and 

clauses in greater detail by using detailed dependency relations such as dobj, pobj, advcl, 

and ccomp. This means that we are able to know whether a noun is an object with a 

preposition or a direct object and whether a clause is a relative clause or an adverbial 

clause. Furthermore, a sentence is segmented based on the degree of dependencies. All 

features described in Table 2 are a representation vector for each word. We expect that 

even a non-sequential classifier can understand syntactic structure if we use the 

combination of feature set. 

Table 2. Syntactic Features Identified by Parsers 

Parser Feature Set Feature Description 

Constituency 

Parser 

Tree Measurement 
The number of parents (depth), the number of 

siblings (width) 

Tree-label Bigram 

With tree-label sequence from leaf to root, we 

build tree-label bigram in order to resolve the 

ambiguity of the parent node (e.g., SBAR-NP, 

SBAR-VP, PP-PP, PP-NP, etc.) 

Dependency 

Parser 

Token 

Characteristic 

A token is assigned to its characteristics, such as 

part-of-speech tag, dependent type, the number of 

dependencies, preposition type, distance to root, its 

head part-of-speech tag and dependent, whether it 

is right/left-side of root/sub-root, etc. 

Group Information 

Tokens are grouped into noun, prepositional 

phrases and relative, or adverbial clauses, and their 

type (e.g., for, in, if, since, that, what, when, etc.) 

and their position (e.g., is the first/last, is the 

right/left-side of root, etc.).  

Further, a sentence is segmented into three parts 

based on the root and sub-root word determined by 

the number of dependencies 

 

As the whole feature vector is high-dimensional and sparse, it is worthwhile using 

dimension reduction techniques such as principal component analysis (PCA) and 

univariate selection with statistical tests. However, dimension reduction techniques were 

ineffective on our classifier, meaning that all information in the feature vector is 

important. In comparing the models with various feature sets in the 3-gram and 5-gram in 

                                                           
3 https://spacy.io/ 
4 https://nlp.stanford.edu/software/ 
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bag-of-n-gram features, with the tree-label bigrams in the syntactic feature sets, low 

performance of the classifier was observed. There are several reasons for this: because we 

do not have a large dataset, 3-grams and 5-grams may cause overfitting. Tree-label 

bigram features are similar to group information feature sets; they may be correlated. 

These syntactic features are similar to the feature set for semantic role labeling tasks 

[12], [13], [14] because the goal of semantic role labeling is analogous to ours in the sense 

of finding events and their arguments. However, our syntactic features are more elaborate 

in that there are many types of group information and position information for each token, 

which is relevant to our problem because semantic categories are closely related to such 

information. In addition, we design the bag-of-n-gram features. Data preprocessing for 

our specific problem also helps in designing robust syntactic features because it gives a 

cleaner input form to parsers. 

Table 3. Machine Learning Model List 

Linearity Category Model Hyperparameter 

Linear 
- Logistic Regression (LR) C=0.4 

- Passive Aggressive (PA) C=2000 

Nonlinear 

- Naïve Bayes (NB) - 

- K-Nearest Neighbor (KNN) #neighbor=7 

- Decision Tree (DT) - 

- Support Vector Machine (SVM) with kernel C=900 

Ensemble 

Extra Tree (ET) #tree=800 

Random Forest (RF) #tree=1500 

Voting Classifier (VC) with LR, ET, SVM - 

Neural 

Network 

Feedforward Neural Network (FNN) - 

Convolutional Neural Network (CNN) - 

Recurrent Neural Network (RNN) - 

 

4.3. Model Selection 

In machine learning research, various classification models exist that have their own 

way to find the best decision boundary. Because we do not know which one is the best for 

our specific problem, it is worthwhile to have a candidate model set and find the best one. 

In Table 3, we have 12 candidate models ranging from linear to nonlinear models 

including ensembles and neural networks. The best model is selected based on test error 

comparison. It is important in model selection to optimize the hyperparameters of each 

model to be adapted to a specific dataset. Among the various types of hyperparameters for 

each model, we chose representative hyperparameters such as regularization terms from 

LR, PA, and SVM, and the number of trees from DT, ET, and RF, and the number of 

neighbors from KNN. Grid search is used for hyperparameter tuning. We found that linear 

models were insensitive to the change in hyperparameters, whereas nonlinear models 

were sensitive. This means that it is more important to optimize hyperparameters for 

nonlinear models. The only sequential model among our candidate model set was the 

RNN. As [3] mentioned, sequential models perform worse than non-sequential models 

because of their small datasets. Because most of our models are non-sequential models, 

we use the bag-of-n-gram features with a window size that includes sequential 

information. It is interesting that syntactic features have inherent sequential information in 

their own structures. For using the candidate model set and tuning the models, we use the 

Scikit-learn5, Tensorflow6 and Keras7 Python libraries. 

                                                           
5 https://scikit-learn.org/ 
6 https://tensorflow.org/ 
7 https://keras.io/ 
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5. Experiment 
 

5.1. Dataset 

The labeled software requirement dataset from [3] was used for experiments. It has 

approximate 704 sentences and 12753 tokens, which were divided into 16 semantic 

categories and one none-labeled category, as shown in Table 4. The main problem with 

our research is that we make a classifier to distinguish quite a large number (17) of classes 

within a small dataset. Furthermore, the number of instances or tokens in each class are 

different from each other, meaning that we have an unbalanced classification problem 

even with a small dataset. In terms of sentences, there are certain categories with few 

instances, such as refinement of component and sub refinement of object. Therefore, 

the quality of labeled data is very important because a wrongly labeled data point can 

have a significant impact on the model when its weights are updated. From [3], two 

annotators achieved an agreement rate of 80%. This is a relatively low score for a small 

dataset with a skewed class distribution. One tackle point we chose was to make 

consistent rules and to re-annotate the labeled dataset. Some consistent rules are as 

follows: words in action and sub-action categories should only be verbs or verb-phrases. 

Words in object and sub-object should not include prepositional phrases. After re-

annotating, we expected the labeled dataset to have more consistency, which reduces the 

fluctuation of dataset.  

In general, models for a sequential classification problem can benefit from the fixed 

boundaries of a sequence by virtue of BIO encoding, where we split words in each class 

into B (Begin), I (Inside) and O (Outside). This can mitigate the complexity of patterns 

although the number of classes is almost doubled. Owing to the small size of the dataset, 

we do not use BIO encoding because we believe that some benefits may be obtained by 

reducing complex patterns or noise via data cleaning and preprocessing and re-annotation 

with consistent rules. Of the total dataset, 80% is used for training dataset, and 20% is for 

testing dataset.  

Table 4. Number of Instances and Sentences per Category 

Semantic Category # of instances # of sentences 

component 439 308 

refinement of component 143 32 

action 844 687 

refinement of action 1489 269 

condition 836 129 

priority 1162 664 

motivation 657 81 

role 603 300 

object 1302 653 

refinement of object 1409 202 

sub action 134 117 

sub argument of action 282 45 

sub priority 50 49 

sub role 52 51 

sub object 194 101 

sub refinement of object 277 30 

none 2880 703 

Total 12753 - 
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5.2. Measurement 

Classifiers are evaluated by precision, which is the proportion of predictions that are 

correct, and recall, which is the proportion of correct instances, and F1 score, which is a 

weighted harmonic mean of both precision and recall. Given an error matrix or a 

confusion matrix, where each row represents predicted classes while each column 

represents true classes, precision, recall and  F1 score are calculated using Equations (1), 

(2), and (7), respectively. They are used for an evaluation of a single class. As all 

classification problems, including binary classification, consist of multi-classes, an 

evaluation represented as a single numerical value is obtained by averaging multiple 

precision or recall scores for multi-classes. There are two ways for averaging: micro-

averaging in Equations (3) and (4), and macro-averaging in Equations (5) and (6). The 

difference between them is whether the average is calculated over the number of instances 

or classes. Concretely, the sum of all classes’ true-positives is averaged over the total 

number of instances in micro-averaging, whereas the sum of all classes’ precisions or 

recalls is averaged over the total number of classes. Micro-averaged precision, recall and 

F1  score are all the same because ∑ 𝑓𝑝𝑐
𝐶
𝑐  and ∑ 𝑓𝑛𝑐

𝐶
𝑐  are always the same. Micro-

averaging is the same as an accuracy measurement. One disadvantage of micro-averaging 

or accuracy is that the performance of a class that has a small number of instances can be 

dominated by the performance of a class that has a large number of instances because of 

the sum form. Macro-averaging can deal with this problem by assigning equal weight to 

the performance of each class. This means that a class that has a large number of instances 

is advantageous when using micro-averaging, whereas a class that has a small number of 

instances is favorable when using macro-averaging [15]. We use both averaging 

measurement for our experiments because the distribution of class frequency is highly 

skewed. If we use only micro-averaging for our problem, we would overlook the 

performance of classes that has small number of instances, such as refinement of 

component, sub priority and sub refinement of object. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝)

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝) + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑓𝑝)
 (1)   

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝)

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑓𝑛)
 (2)   

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =  
∑ 𝑡𝑝𝑐

𝐶
𝑐

∑ 𝑡𝑝𝑐 + ∑ 𝑓𝑝𝑐
𝐶
𝑐

𝐶
𝑐

 (3)   

 

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =  
∑ 𝑡𝑝𝑐

𝐶
𝑐

∑ 𝑡𝑝𝑐 + ∑ 𝑓𝑛𝑐
𝐶
𝑐

𝐶
𝑐

 (4)   

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1

𝐶
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐

𝐶

𝑐=1

 (5)   

 

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =
1

𝐶
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝐶

𝑐=1

 (6)   

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + (𝑟𝑒𝑐𝑎𝑙𝑙)
 (7)   
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5.3. Results and Discussion 

Experiments were conducted in four scenarios including (1) test errors of all candidate 

models, (2) test errors of two features, (3) the trend of test errors according to data size, 

and (4) the comparative study between our best model and the previous model, REaCT. 

The first experiment was conducted on all candidate models, aimed at choosing the 

best model for our specific problem and examining the characteristics of each model 

based on the results in Table 5. The micro-averaged F1 score (Micro-F1), and the macro-

averaged F1 score (Macro-F1) are significantly different because of the skewed class 

distribution. In terms of statistical power, a class that has a small number of 

instances (small class) is harder to train than a class that has a large number of 

instances (large class). As Macro-F1  accounts for such difficulty, it usually rates 

lower performance than Micro- F1 . Furthermore, Macro- F1  has more complex 

patterns in terms of syntactic structure if a class has a smaller number of instances. 

SVMs showed the best performance except for those within the VC model, whereas 

the NB model showed the worst performance. The SVM model is well known to be 

robust even with a small, complex dataset because of its high-dimensional feature 

space by using the kernel trick. The NB model usually fails to make a reliable 

estimation of the probability of each class when the dataset is small. It is interesting 

to note that the LR obtained performance comparable to the best SVM even though 

it is a linear model. Given elaborately designed feature vector with syntactic 

structures, even the linear model was able to understand the properties of our 

complex dataset. However, it has been found that in the entire candidate set, the 

more complex models tend to have lower test errors than the less complex models. 

Among neural networks, RNN, as a sequential learner, outperforms the other neural 

networks. These results suggest that the possibility that a complex neural network 

can be trained well even with a small dataset. 

Table 5. Test Errors of Candidate Models 

Model Micro-F1 Macro-F1 

Logistic Regression (LR) 0.7731 0.6835 

Passive Aggressive (PA) 0.7379 0.6347 

Naïve Bayes (NB) 0.5369 0.4354 

K-Nearest Neighbor (KNN) 0.7131 0.6091 

Decision Tree (DT) 0.6918 0.5951 

Support Vector Machine (SVM) with 

Radial Basis Function (RBF) kernel 
0.7808 0.6866 

Extra Tree (ET) 0.7530 0.6508 

Random Forest (RF) 0.7487 0.6505 

Voting Classifier (VC) with 

LR, ET, SVM 
0.7808 0.6881 

Feedforward Neural Network (FNN) 0.7460 0.6465 

Convolutional Neural Network (CNN) 0.7344 0.6251 

Recurrent Neural Network (RNN) 0.7549 0.6646 

 

The second experiment is the comparison of two types of feature sets: bag-of-n-grams, 

and syntactic features based on parsers in Figure 3(left). We use the best model, SVM, 

among the candidate set for this evaluations. Owing to heterogeneous insights, those two 

feature sets have different properties. The bag-of-n-grams does not require any domain  
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Figure 3. Test Errors of Two Feature Set and of Three Data Size 

knowledge, and uses only data statistics which means it is scalable, whereas they consist 

of very sparse and high dimensional vector forms because of the lookup tables. Syntactic 

features require extensive domain knowledge which means syntactic tools are needed, 

whereas they are represented as dense and low dimensional vector forms. The model 

trained with syntactic features is significantly better than the bag-of-n-grams in both 

Micro-F1 and Macro-F1. This means that syntactic features are more important in our 

problem. We found that the micro-gap between two feature sets is greater than the 

macro-gap. We expect that because the bag-of-n-grams aggressively uses data 

statistics, they obtain some benefit from large classes. Instead, syntactic features are 

especially effective for small classes, such as refinement of component and sub 

refinement of object. A small class usually requires deep understanding of syntactic 

structures. Note that the best model is trained with both types of features. This 

means that two feature sets are less correlated with each other. 

Our main problem is data deficiency. We expect that the performance of the models 

would increase with larger dataset. To verify this, the third experiment (shown in Figure 

3(right)) was performed for observing performance trends as the data size increases from 

one-third, to the full dataset. For this evaluation, three models representing different 

model capacities, such as LR, SVM and RNN, were used. We found that both the Micro-

F1 and the Macro-F1 of all models increased as the datasets became larger. Therefore, we 

expect to obtain better results with larger datasets. 

The last experiment was for the comparison with the previous model, REaCT [3]. To 

ensure robustness we performed the experiment 10 times on each case with different 

random seeds from 1 to 10 with random shuffling dataset. Furthermore, to be fairness we 

used the same dataset with the same hyperparameter tuning methods. Unlike before, we 

show both averaged performances and each category performance in more detail (Table 6). 

Our proposed model significantly outperformed the previous model, REaCT. The 

performances of most categories and both Micro-F1 and Macro-F1 are improved by our 

proposed model. The Macro-F1 gap between the two models (0.03) is larger than that 

of Micro-F1 (0.08). This means that our proposed model works well not just with 

large classes but also small classes, which require more complex syntactic structures  

in particular. Given that it has highest standard deviation (the numerical values in 

parentheses) and the lowest F1 score in the previous model, sub refinement of object 

is considered as the most difficult of the small classes to classify. When evaluating 

our proposed model, it was found that sub refinement of object was the most 

improved F1  score from 0.11 to 0.49. This improvement is due to the elaborate 

syntactic structures of our proposed model. When we add segment id features in the 

group information feature set, large improvements occur. Moreover, we found that 
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small classes such as refinement of component, and sub role were largely improved 

by our proposed model. 

Table 6. Test Errors of REaCT and Proposed Model  

Semantic Category REaCT Proposed 

component 0.77 (0.04) 0.83 (0.04) 

refinement of component 0.21 (0.13) 0.36 (0.16) 

action 0.85 (0.02) 0.85 (0.01) 

refinement of action 0.53 (0.04) 0.58 (0.05) 

condition 0.45 (0.12) 0.73 (0.04) 

priority 0.92 (0.02) 0.94 (0.01) 

motivation 0.70 (0.09) 0.75 (0.03) 

role 0.91 (0.02) 0.96 (0.00) 

object 0.76 (0.03) 0.82 (0.02) 

refinement of object 0.48 (0.07) 0.51 (0.06) 

sub action 0.53 (0.09) 0.59 (0.06) 

sub argument of action 0.20 (0.09) 0.28 (0.12) 

sub priority 0.72 (0.13) 0.73 (0.10) 

sub role 0.69 (0.14) 0.83 (0.08) 

sub object 0.48 (0.12) 0.50 (0.06) 

sub refinement of object 0.11 (0.13) 0.49 (0.21) 

Micro-𝐅𝟏 0.72 (0.02) 0.75 (0.02) 

Macro-𝐅𝟏 0.60 (0.03) 0.68 (0.03) 

 

6. Conclusion 

With the high complexity of programs, it is difficult for developers to understand users’ 

ambiguous and incomplete expressions for software requirements. We solved this 

problem by using NLP or SA with pre-defined semantic categories. Given a small, 

domain-specific text dataset, suitable text preprocessing and feature engineering with 

elaborate syntactic structures were constructed for our classifier. We carefully designed 

syntactic features by using dependency and constituency parsers. Among candidate 

machine learning models, the SVM with kernel was the best model as a single model in 

terms of the micro-averaged F1 score (Micro-F1), whereas the VC was the best in terms 

of the macro-averaged F1 score (Macro-F1). From several experiments, we conclude that 

syntactic features are more important than bag-of-n-gram features, and that the 

performance can be improved when we have a larger dataset. Furthermore, we found that 

our proposed model performed better than the previous model, REaCT. Because the main 

problem was that the dataset is not enough in size, we believe that if we could collect 

more data, bag-of-n-gram features and semantic features, such as word embedding, would 

become more useful. 
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