
International Journal of Advanced Science and Technology

Vol.112 (2018), pp.123-136

http://dx.doi.org/10.14257/ijast.2018.112.12

ISSN: 2005-4238 IJAST

Copyright ⓒ 2018 SERSC Australia

Improving Classifiers for Semantic Annotation of Software

Requirements with Elaborate Syntactic Structure
1

Yeongsu Kim1,2, Seungwoo Lee1,2, Markus Dollmann3,4 and Michaela Geierhos3,4

1University of Science and Technology (UST), Korea
2Korea Institute of Science and Technology Information (KISTI)

3Heinz Nixdorf Institute
4University of Paderborn

kys5670i@ust.ac.kr, swlee@kisti.re.kr,

{dollmann|geierhos}@hni.upd.de

Abstract

A user generally writes software requirements in ambiguous and incomplete form by

using natural language; therefore, a software developer may have difficulty in clearly

understanding what the meanings are. To solve this problem with automation, we propose

a classifier for semantic annotation with manually pre-defined semantic categories. To

improve our classifier, we carefully designed syntactic features extracted by constituency

and dependency parsers. Even with a small dataset and a large number of classes, our

proposed classifier records an accuracy of 0.75, which outperforms the previous model,

REaCT.

Keywords: Software Engineering, Natural Language Processing, Semantic Annotation,

Machine Learning, Feature Engineering, Syntactic Structure

1. Introduction

By virtue of hardware and software developments, computer science (CS) has become

a popular research discipline over the past several decades. This phenomenon is

confirmed in academic as well as industry research. The number of papers related to CS

has been increasing since 1990 based on the statistics of the Association for Computing

Machinery (ACM) and Institute of Electrical and Electronics Engineers (IEEE) [1], and

Information Technology (IT) companies are leading the industrial market. Owing to the

fact that the CS domain is growing explosively, the complexity of software programs is

steadily increasing, and toolkits such as program languages are also evolving. This fact

presents some challenges, one of which is the facility of communication between

developers and users. Developers use explicit language in order for computers to

understand, whereas users typically speak in abstract forms assuming that they understand

each other’s context. Therefore, users generally write software requirements using natural

language, which has certain limitations in its application to computers such as ambiguity,

over-flexibility, amalgamation, confusion and lack of modularization [2]. These

limitations have led to the evolution of natural language processing (NLP), which is a

field concerned with the interactions between computers and humans. If we think of

software developers as computers, the communication problem can be solved using NLP.

In the field of software engineering, Dollmann (2016) mentioned that NLP has been

defined as semantic annotation (SA) in which each word in a software requirement text

can be annotated with semantic categories. With semantic categories pre-defined by

researchers, we are able to deal with communication barriers such as ambiguous and

incomplete expressions. In practice, as long as software requirements are semantically

Received (November 8, 2017), Review Result (January 25, 2018), Accepted (January 31, 2018)

International Journal of Advanced Science and Technology

Vol.112 (2018)

124 Copyright ⓒ 2018 SERSC Australia

annotated, developers can quickly figure out requirements, or give feedback to users when

their requirements are incomplete, and again after the users restate their requirements in a

clear form. Furthermore, developers are able to understand users’ requirements even

though they are ambiguous. Therefore, the goal of this study is to bridge the

communication gap between developers and users by using NLP techniques such as

machine learning methods and semantic categories. Furthermore, our model that

sensitively designed on this task outperforms the previous model, REaCT [3].

2. Related Work

Two representative approaches – the rule-based approach and the statistical machine-

learning (ML) approach – have been adopted for NLP. In general, the rule-based approach

is a traditional method incorporating domain knowledge, and is used when a large dataset

could not be involved. The ML approach is a way to leverage the power of statistics, and

it is used when a large dataset is involved. Both have their respective pros and cons [4].

The rule-based approach is easy to understand and maintain because its rules are designed

on human knowledge; however it is not robust, and it requires considerable human effort.

In contrast, the ML approach is more robust because it is adaptable and trainable and it

does not need much human effort; however, it requires a large amount of data and certain

ML technologies. A distinct difference between the two approaches is that the rule-based

approach displays explicit action behavior, whereas the ML approach relies on implicit

action behavior based on features whose weights are updated by the model and the data.

For example, Palmer (1990) considered taxonomies as explicit thresholds for decision-

makings, whereas Liang (1992) used them as additional features with flexible weights for

soft decisions. Because the ML approach includes some rules as features to be learned

from the dataset, the ML approach is more general than the rule-based approach.

In the NLP domain, there are many different types of tasks including document

classification, named entity recognition, semantic role labeling, and machine translation.

The NLP task that is most similar to our problem, SA, is semantic role labeling in terms

of identifying semantic roles and their arguments in software requirements [3]. Because

such roles and arguments are too complex in form to be described with explicit rules,

meaning that there are many exceptions when using a rule list, the current approaches to

semantic role labeling are mostly based on supervised machine learning models with

various types of feature sets [7]. Given this knowledge, we adopted an ML approach for

solving our problems as the previous research did. In order to represent complex

information, we need to understand other NLP tasks such as parsing, chunking, part of

speech tagging, and named entity recognition, because for our classifier, we concatenate

features identified by other NLP classifiers [8]. Hence, it is essential to understand not

only semantic role labeling but also other NLP tasks for solving our SA problem.

3. Semantic Annotation

Given the fact that words should be annotated with categories, we consider our SA

problem as a classification problem with semantic categories; therefore, we use

supervised ML models. Then, what are the semantic categories? They are represented in

Figure 1e, and proposed by Dollmann (2016), whose authors manually defined them with

knowledge of software engineering and frames obtained after examining the entire dataset.

The authors believed that even though text forms of software requirements can be

expressed in different ways, they could be grouped into semantic and relevant regions in

the sentence, such as description and functionality. In other words, a software requirement

can be semantically decomposed into several categories according to the relevant content.

For example, component usually refers to a product or system and action represents what

a component affects. Because some software requirements contain additional or

refinement descriptions and subordinate clauses, there exist certain types of modifier

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 125

categories, such as refinement of component and argument of action. A single example of

a software requirement is presented in Figure 1a.

Figure 1. Semantic Category with Syntactic Structure

Given the semantic categories, the requirement can be semantically annotated as in

Figure 1b. We can easily understand what the meaning of the software requirement is

after it is annotated. One linguistic theory suggests that a language is a set of levels of

representations such as phonemics, morphology and phrase structure [9], which is a

pervasive approach in NLP today. Given this knowledge, semantic categories can be

syntactically divided into groups in two ways: based on grammar or hierarchy (Figure 1f).

With the grammar aspect, the categories are grouped into subject, predicate and object,

which are the principal components of the sentence. In addition, categories are

represented by a hierarchical tree structure, where each category is arranged on the basis

of dependence. For example, sub-object is considered as a head because refinement of

sub-object is dependent on sub-object, and at the same time, sub-object can be a

dependent because it depends on object. Head and dependent are usually composed of

noun or verb and phrase or clause, respectively. Finally, software requirement text can be

both syntactically and semantically framed, as in Figure 1c. Note that such a frame is

closely related to results from the sentence extracted by a parser for NLP, but is not

exactly same. The important thing is that if our classifier is able to understand the frame,

its performance will increase because of its relevance. Thus, we carefully design elaborate

syntactic features based on the frame.

4. Our Approach

Our strategy both to annotate requirements and to improve the previous model involves

three tackle parts: data, feature and model part. They are not just the essential parts for

building machine learning pipeline but also the source of prediction errors. Also, they are

less correlated with each other. When we build a supervised learning classifier, assuming

that we have mean squared error criterion and irreducible error ε is omitted, the total

prediction error is defined as

International Journal of Advanced Science and Technology

Vol.112 (2018)

126 Copyright ⓒ 2018 SERSC Australia

∑
1
𝑚 [(𝒚𝑖 − 𝑓(𝒙𝑖))

2
]𝑚

𝑖=0

𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟
=

∑
1
𝑚 [𝑓(𝒙𝑖) − 𝑓(𝒙𝑖)]𝑚

𝑖=0

𝑏𝑖𝑎𝑠 𝑒𝑟𝑟𝑜𝑟
+

∑
1
𝑚 [[𝑓(𝒙𝑖)2] − ([𝑓(𝒙𝑖)])

2
]𝑚

𝑖=0

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟

where 𝒙𝑖 ∈ ℛ𝑑 is a 𝑑 dimensional feature vector for a certain software requirement

(Section 4.2), 𝒚𝑖 ∈ ℛ17 is a true label with one-hot encoding composed of 16 semantic

classes and a noise class, 𝑓(𝒙) is function described by our learned classifier, and 𝑓(𝒙) is

a true function. The total error is decomposed into bias error and variance error. Bias error,

as the distance from true function, occurs when the model 𝑓(𝒙) is not sufficient to explain

the distribution of the dataset and the feature vector 𝒙 is not representative in

distinguishing all the classes. We decrease the bias error by selecting the appropriate

machine learning model 𝑓(𝒙) among various types of models to specific dataset, by

tuning hyperparameters of the model 𝑓(𝒙), and by designing the representative feature

vector 𝒙. Variance error arises when the dataset is inherently noise and fluctuant. We deal

with the high-variance problem by cleaning a noisy dataset and by performing

normalization to avoid sparsity and collect more representative data. High-variance can be

solved by model selection and feature engineering as was the high-bias problem, but in

addition, the data characteristics cause high-variance intrinsically. Note that there is a

trade-off problem between high bias (i.e. underfitting) and high variance (i.e. overfitting)

and therefore, we need to find a consensus. Given this common knowledge in machine

learning research, we build a machine learning pipeline that includes data, feature and

model part (Figure 2).

Figure 2. Machine Learning Pipeline

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 127

4.1. Data Cleaning and Preprocessing

Because a text dataset is discrete and sparse, it is important that words that have the

same stem are grouped into a single representative word, and that low entropy words such

as unique words and stop-words, are removed. Because our text data, as software

requirements, have a specific type and form, we performed specific preprocessing during

data cleaning. For example, redundant but frequent words and phrases such as Hello, Also,

Hi, In addition, I think, In general, i.e., e.g. were removed. We changed the word, if into

that when we encountered the pattern, it would be X if. We converted imperative

sentences into declarative sentences by adding an impersonal pronoun. Some prepositions

were removed when they were with intransitive verbs. Some special characters such as the

hyphen and the slash were removed. In the preprocessing step, as general text lowering

and stemming were executed, but we did not remove stop words because it helped bag-of-

n-gram features (4.2 Feature Engineering). We chose stemming instead of lemmatization

for higher performance because lemmatization feeds the parser poor text forms. We did

not perform any text preprocessing for syntactic feature extraction because this may cause

poor parser performance. This is the reason why we have two types of preprocessing: data

cleaning and preprocessing. We use the Natural Language Toolkit (NLTK) 2 Python

library to implement these steps. Data cleaning and preprocessing are important not just

for mitigating the sparsity problem, but also for improving the performance of

constituency and dependency parsers, whose outputs are used for syntactic features.

4.2. Feature Engineering

Our challenge is to train a classifier, and to be able to distinguish a large number of

classes within a small dataset (5.1 Dataset). Given these conditions, feature engineering is

considered as the most important step in the pipeline. In general, there are two

representative insights when designing or selecting the feature set: data appearance and

domain knowledge, which are included in the check list for solving feature selection

problems as described in [10]. First, in terms of data appearance some frequent patterns

exist in the dataset, such as i want to be, it would be nice, job seeker can, the product shall,

user can, a user, and the product. A bag-of-n-grams provides good representations for

recognizing these patterns. We build a bag of n-grams with several levels, whose top 10

words are listed in Table 1. Because all of our features are designed for each word, 2-

gram, as even number, can represent two different features such as left-2-gram and right-

2gram. As bag-of-n-gram features are described by lookup tables, this gives us high-

dimensional and sparse feature vectors. These types of features are useful because most

expressions used in software requirements are not arbitrary but specific forms to describe

the purpose of the requirements.

Table 1. Top10 Word List of n-grams

1-gram 2-gram 3-gram 5-gram

the , i , i want , i want to be

. as a i want to it would be nice to

to i want be abl to as a user , i

a want to it would be user, i want to

, would be the product shall , i want to see

be the system the system shall a user , i want

i to the would be nice staff member shall be abl

of it would a user can nurs staff member shall be

shall a user to be abl member shall be abl to

as abl to so that i it would be nice if

2 https://nltk.org/

International Journal of Advanced Science and Technology

Vol.112 (2018)

128 Copyright ⓒ 2018 SERSC Australia

Second, with domain knowledge representing the syntactic frame as we discussed in

Section 3, we design elaborate syntactic features by using language resources such as the

part-of-speech tagger and the constituency and dependency parser. We use the spaCy3

Python library and Stanford Parser4 for implementing them. With the two parsers, we

represent a sentence into syntactic features in two ways. Table 2 shows syntactic features

designed by both parsers. The constituency parser describes a sentence as a tree structure

based on phrase-structure rules. The depth and width of the tree structure at each word can

be syntactic positions. Depth is calculated via the number of parents and width through

the number of siblings on the same level. With this hierarchical property, we design tree-

label bigram feature, which is able to distinguish parent ambiguities. The dependency

parser represents a sentence not as a tree structure, but by simple relational or dependent

sets such as nsubj, nmod, and det. For each word, syntactic characteristics are extracted

such as the part-of-speech tag, and the dependent type. By using the dependent type,

words are grouped into phrases and clauses. One benefit of dependency over constituency

is that dependency is used to not only group words but also recognize words, phrases and

clauses in greater detail by using detailed dependency relations such as dobj, pobj, advcl,

and ccomp. This means that we are able to know whether a noun is an object with a

preposition or a direct object and whether a clause is a relative clause or an adverbial

clause. Furthermore, a sentence is segmented based on the degree of dependencies. All

features described in Table 2 are a representation vector for each word. We expect that

even a non-sequential classifier can understand syntactic structure if we use the

combination of feature set.

Table 2. Syntactic Features Identified by Parsers

Parser Feature Set Feature Description

Constituency

Parser

Tree Measurement
The number of parents (depth), the number of

siblings (width)

Tree-label Bigram

With tree-label sequence from leaf to root, we

build tree-label bigram in order to resolve the

ambiguity of the parent node (e.g., SBAR-NP,

SBAR-VP, PP-PP, PP-NP, etc.)

Dependency

Parser

Token

Characteristic

A token is assigned to its characteristics, such as

part-of-speech tag, dependent type, the number of

dependencies, preposition type, distance to root, its

head part-of-speech tag and dependent, whether it

is right/left-side of root/sub-root, etc.

Group Information

Tokens are grouped into noun, prepositional

phrases and relative, or adverbial clauses, and their

type (e.g., for, in, if, since, that, what, when, etc.)

and their position (e.g., is the first/last, is the

right/left-side of root, etc.).

Further, a sentence is segmented into three parts

based on the root and sub-root word determined by

the number of dependencies

As the whole feature vector is high-dimensional and sparse, it is worthwhile using

dimension reduction techniques such as principal component analysis (PCA) and

univariate selection with statistical tests. However, dimension reduction techniques were

ineffective on our classifier, meaning that all information in the feature vector is

important. In comparing the models with various feature sets in the 3-gram and 5-gram in

3 https://spacy.io/
4 https://nlp.stanford.edu/software/

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 129

bag-of-n-gram features, with the tree-label bigrams in the syntactic feature sets, low

performance of the classifier was observed. There are several reasons for this: because we

do not have a large dataset, 3-grams and 5-grams may cause overfitting. Tree-label

bigram features are similar to group information feature sets; they may be correlated.

These syntactic features are similar to the feature set for semantic role labeling tasks

[12], [13], [14] because the goal of semantic role labeling is analogous to ours in the sense

of finding events and their arguments. However, our syntactic features are more elaborate

in that there are many types of group information and position information for each token,

which is relevant to our problem because semantic categories are closely related to such

information. In addition, we design the bag-of-n-gram features. Data preprocessing for

our specific problem also helps in designing robust syntactic features because it gives a

cleaner input form to parsers.

Table 3. Machine Learning Model List

Linearity Category Model Hyperparameter

Linear
- Logistic Regression (LR) C=0.4

- Passive Aggressive (PA) C=2000

Nonlinear

- Naïve Bayes (NB) -

- K-Nearest Neighbor (KNN) #neighbor=7

- Decision Tree (DT) -

- Support Vector Machine (SVM) with kernel C=900

Ensemble

Extra Tree (ET) #tree=800

Random Forest (RF) #tree=1500

Voting Classifier (VC) with LR, ET, SVM -

Neural

Network

Feedforward Neural Network (FNN) -

Convolutional Neural Network (CNN) -

Recurrent Neural Network (RNN) -

4.3. Model Selection

In machine learning research, various classification models exist that have their own

way to find the best decision boundary. Because we do not know which one is the best for

our specific problem, it is worthwhile to have a candidate model set and find the best one.

In Table 3, we have 12 candidate models ranging from linear to nonlinear models

including ensembles and neural networks. The best model is selected based on test error

comparison. It is important in model selection to optimize the hyperparameters of each

model to be adapted to a specific dataset. Among the various types of hyperparameters for

each model, we chose representative hyperparameters such as regularization terms from

LR, PA, and SVM, and the number of trees from DT, ET, and RF, and the number of

neighbors from KNN. Grid search is used for hyperparameter tuning. We found that linear

models were insensitive to the change in hyperparameters, whereas nonlinear models

were sensitive. This means that it is more important to optimize hyperparameters for

nonlinear models. The only sequential model among our candidate model set was the

RNN. As [3] mentioned, sequential models perform worse than non-sequential models

because of their small datasets. Because most of our models are non-sequential models,

we use the bag-of-n-gram features with a window size that includes sequential

information. It is interesting that syntactic features have inherent sequential information in

their own structures. For using the candidate model set and tuning the models, we use the

Scikit-learn5, Tensorflow6 and Keras7 Python libraries.

5 https://scikit-learn.org/
6 https://tensorflow.org/
7 https://keras.io/

International Journal of Advanced Science and Technology

Vol.112 (2018)

130 Copyright ⓒ 2018 SERSC Australia

5. Experiment

5.1. Dataset

The labeled software requirement dataset from [3] was used for experiments. It has

approximate 704 sentences and 12753 tokens, which were divided into 16 semantic

categories and one none-labeled category, as shown in Table 4. The main problem with

our research is that we make a classifier to distinguish quite a large number (17) of classes

within a small dataset. Furthermore, the number of instances or tokens in each class are

different from each other, meaning that we have an unbalanced classification problem

even with a small dataset. In terms of sentences, there are certain categories with few

instances, such as refinement of component and sub refinement of object. Therefore,

the quality of labeled data is very important because a wrongly labeled data point can

have a significant impact on the model when its weights are updated. From [3], two

annotators achieved an agreement rate of 80%. This is a relatively low score for a small

dataset with a skewed class distribution. One tackle point we chose was to make

consistent rules and to re-annotate the labeled dataset. Some consistent rules are as

follows: words in action and sub-action categories should only be verbs or verb-phrases.

Words in object and sub-object should not include prepositional phrases. After re-

annotating, we expected the labeled dataset to have more consistency, which reduces the

fluctuation of dataset.

In general, models for a sequential classification problem can benefit from the fixed

boundaries of a sequence by virtue of BIO encoding, where we split words in each class

into B (Begin), I (Inside) and O (Outside). This can mitigate the complexity of patterns

although the number of classes is almost doubled. Owing to the small size of the dataset,

we do not use BIO encoding because we believe that some benefits may be obtained by

reducing complex patterns or noise via data cleaning and preprocessing and re-annotation

with consistent rules. Of the total dataset, 80% is used for training dataset, and 20% is for

testing dataset.

Table 4. Number of Instances and Sentences per Category

Semantic Category # of instances # of sentences

component 439 308

refinement of component 143 32

action 844 687

refinement of action 1489 269

condition 836 129

priority 1162 664

motivation 657 81

role 603 300

object 1302 653

refinement of object 1409 202

sub action 134 117

sub argument of action 282 45

sub priority 50 49

sub role 52 51

sub object 194 101

sub refinement of object 277 30

none 2880 703

Total 12753 -

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 131

5.2. Measurement

Classifiers are evaluated by precision, which is the proportion of predictions that are

correct, and recall, which is the proportion of correct instances, and F1 score, which is a

weighted harmonic mean of both precision and recall. Given an error matrix or a

confusion matrix, where each row represents predicted classes while each column

represents true classes, precision, recall and F1 score are calculated using Equations (1),

(2), and (7), respectively. They are used for an evaluation of a single class. As all

classification problems, including binary classification, consist of multi-classes, an

evaluation represented as a single numerical value is obtained by averaging multiple

precision or recall scores for multi-classes. There are two ways for averaging: micro-

averaging in Equations (3) and (4), and macro-averaging in Equations (5) and (6). The

difference between them is whether the average is calculated over the number of instances

or classes. Concretely, the sum of all classes’ true-positives is averaged over the total

number of instances in micro-averaging, whereas the sum of all classes’ precisions or

recalls is averaged over the total number of classes. Micro-averaged precision, recall and

F1 score are all the same because ∑ 𝑓𝑝𝑐
𝐶
𝑐 and ∑ 𝑓𝑛𝑐

𝐶
𝑐 are always the same. Micro-

averaging is the same as an accuracy measurement. One disadvantage of micro-averaging

or accuracy is that the performance of a class that has a small number of instances can be

dominated by the performance of a class that has a large number of instances because of

the sum form. Macro-averaging can deal with this problem by assigning equal weight to

the performance of each class. This means that a class that has a large number of instances

is advantageous when using micro-averaging, whereas a class that has a small number of

instances is favorable when using macro-averaging [15]. We use both averaging

measurement for our experiments because the distribution of class frequency is highly

skewed. If we use only micro-averaging for our problem, we would overlook the

performance of classes that has small number of instances, such as refinement of

component, sub priority and sub refinement of object.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝)

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝) + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑓𝑝)
 (1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝)

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑓𝑛)
 (2)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =
∑ 𝑡𝑝𝑐

𝐶
𝑐

∑ 𝑡𝑝𝑐 + ∑ 𝑓𝑝𝑐
𝐶
𝑐

𝐶
𝑐

 (3)

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =
∑ 𝑡𝑝𝑐

𝐶
𝑐

∑ 𝑡𝑝𝑐 + ∑ 𝑓𝑛𝑐
𝐶
𝑐

𝐶
𝑐

 (4)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1

𝐶
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐

𝐶

𝑐=1

 (5)

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =
1

𝐶
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝐶

𝑐=1

 (6)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + (𝑟𝑒𝑐𝑎𝑙𝑙)
 (7)

International Journal of Advanced Science and Technology

Vol.112 (2018)

132 Copyright ⓒ 2018 SERSC Australia

5.3. Results and Discussion

Experiments were conducted in four scenarios including (1) test errors of all candidate

models, (2) test errors of two features, (3) the trend of test errors according to data size,

and (4) the comparative study between our best model and the previous model, REaCT.

The first experiment was conducted on all candidate models, aimed at choosing the

best model for our specific problem and examining the characteristics of each model

based on the results in Table 5. The micro-averaged F1 score (Micro-F1), and the macro-

averaged F1 score (Macro-F1) are significantly different because of the skewed class

distribution. In terms of statistical power, a class that has a small number of

instances (small class) is harder to train than a class that has a large number of

instances (large class). As Macro-F1 accounts for such difficulty, it usually rates

lower performance than Micro- F1 . Furthermore, Macro- F1 has more complex

patterns in terms of syntactic structure if a class has a smaller number of instances.

SVMs showed the best performance except for those within the VC model, whereas

the NB model showed the worst performance. The SVM model is well known to be

robust even with a small, complex dataset because of its high-dimensional feature

space by using the kernel trick. The NB model usually fails to make a reliable

estimation of the probability of each class when the dataset is small. It is interesting

to note that the LR obtained performance comparable to the best SVM even though

it is a linear model. Given elaborately designed feature vector with syntactic

structures, even the linear model was able to understand the properties of our

complex dataset. However, it has been found that in the entire candidate set, the

more complex models tend to have lower test errors than the less complex models.

Among neural networks, RNN, as a sequential learner, outperforms the other neural

networks. These results suggest that the possibility that a complex neural network

can be trained well even with a small dataset.

Table 5. Test Errors of Candidate Models

Model Micro-F1 Macro-F1

Logistic Regression (LR) 0.7731 0.6835

Passive Aggressive (PA) 0.7379 0.6347

Naïve Bayes (NB) 0.5369 0.4354

K-Nearest Neighbor (KNN) 0.7131 0.6091

Decision Tree (DT) 0.6918 0.5951

Support Vector Machine (SVM) with

Radial Basis Function (RBF) kernel
0.7808 0.6866

Extra Tree (ET) 0.7530 0.6508

Random Forest (RF) 0.7487 0.6505

Voting Classifier (VC) with

LR, ET, SVM
0.7808 0.6881

Feedforward Neural Network (FNN) 0.7460 0.6465

Convolutional Neural Network (CNN) 0.7344 0.6251

Recurrent Neural Network (RNN) 0.7549 0.6646

The second experiment is the comparison of two types of feature sets: bag-of-n-grams,

and syntactic features based on parsers in Figure 3(left). We use the best model, SVM,

among the candidate set for this evaluations. Owing to heterogeneous insights, those two

feature sets have different properties. The bag-of-n-grams does not require any domain

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 133

Figure 3. Test Errors of Two Feature Set and of Three Data Size

knowledge, and uses only data statistics which means it is scalable, whereas they consist

of very sparse and high dimensional vector forms because of the lookup tables. Syntactic

features require extensive domain knowledge which means syntactic tools are needed,

whereas they are represented as dense and low dimensional vector forms. The model

trained with syntactic features is significantly better than the bag-of-n-grams in both

Micro-F1 and Macro-F1. This means that syntactic features are more important in our

problem. We found that the micro-gap between two feature sets is greater than the

macro-gap. We expect that because the bag-of-n-grams aggressively uses data

statistics, they obtain some benefit from large classes. Instead, syntactic features are

especially effective for small classes, such as refinement of component and sub

refinement of object. A small class usually requires deep understanding of syntactic

structures. Note that the best model is trained with both types of features. This

means that two feature sets are less correlated with each other.

Our main problem is data deficiency. We expect that the performance of the models

would increase with larger dataset. To verify this, the third experiment (shown in Figure

3(right)) was performed for observing performance trends as the data size increases from

one-third, to the full dataset. For this evaluation, three models representing different

model capacities, such as LR, SVM and RNN, were used. We found that both the Micro-

F1 and the Macro-F1 of all models increased as the datasets became larger. Therefore, we

expect to obtain better results with larger datasets.

The last experiment was for the comparison with the previous model, REaCT [3]. To

ensure robustness we performed the experiment 10 times on each case with different

random seeds from 1 to 10 with random shuffling dataset. Furthermore, to be fairness we

used the same dataset with the same hyperparameter tuning methods. Unlike before, we

show both averaged performances and each category performance in more detail (Table 6).

Our proposed model significantly outperformed the previous model, REaCT. The

performances of most categories and both Micro-F1 and Macro-F1 are improved by our

proposed model. The Macro-F1 gap between the two models (0.03) is larger than that

of Micro-F1 (0.08). This means that our proposed model works well not just with

large classes but also small classes, which require more complex syntactic structures

in particular. Given that it has highest standard deviation (the numerical values in

parentheses) and the lowest F1 score in the previous model, sub refinement of object

is considered as the most difficult of the small classes to classify. When evaluating

our proposed model, it was found that sub refinement of object was the most

improved F1 score from 0.11 to 0.49. This improvement is due to the elaborate

syntactic structures of our proposed model. When we add segment id features in the

group information feature set, large improvements occur. Moreover, we found that

International Journal of Advanced Science and Technology

Vol.112 (2018)

134 Copyright ⓒ 2018 SERSC Australia

small classes such as refinement of component, and sub role were largely improved

by our proposed model.

Table 6. Test Errors of REaCT and Proposed Model

Semantic Category REaCT Proposed

component 0.77 (0.04) 0.83 (0.04)

refinement of component 0.21 (0.13) 0.36 (0.16)

action 0.85 (0.02) 0.85 (0.01)

refinement of action 0.53 (0.04) 0.58 (0.05)

condition 0.45 (0.12) 0.73 (0.04)

priority 0.92 (0.02) 0.94 (0.01)

motivation 0.70 (0.09) 0.75 (0.03)

role 0.91 (0.02) 0.96 (0.00)

object 0.76 (0.03) 0.82 (0.02)

refinement of object 0.48 (0.07) 0.51 (0.06)

sub action 0.53 (0.09) 0.59 (0.06)

sub argument of action 0.20 (0.09) 0.28 (0.12)

sub priority 0.72 (0.13) 0.73 (0.10)

sub role 0.69 (0.14) 0.83 (0.08)

sub object 0.48 (0.12) 0.50 (0.06)

sub refinement of object 0.11 (0.13) 0.49 (0.21)

Micro-𝐅𝟏 0.72 (0.02) 0.75 (0.02)

Macro-𝐅𝟏 0.60 (0.03) 0.68 (0.03)

6. Conclusion

With the high complexity of programs, it is difficult for developers to understand users’

ambiguous and incomplete expressions for software requirements. We solved this

problem by using NLP or SA with pre-defined semantic categories. Given a small,

domain-specific text dataset, suitable text preprocessing and feature engineering with

elaborate syntactic structures were constructed for our classifier. We carefully designed

syntactic features by using dependency and constituency parsers. Among candidate

machine learning models, the SVM with kernel was the best model as a single model in

terms of the micro-averaged F1 score (Micro-F1), whereas the VC was the best in terms

of the macro-averaged F1 score (Macro-F1). From several experiments, we conclude that

syntactic features are more important than bag-of-n-gram features, and that the

performance can be improved when we have a larger dataset. Furthermore, we found that

our proposed model performed better than the previous model, REaCT. Because the main

problem was that the dataset is not enough in size, we believe that if we could collect

more data, bag-of-n-gram features and semantic features, such as word embedding, would

become more useful.

Acknowledgments

This paper is a revised and expanded version of a paper entitled “Semantic Annotation

of Software Requirements with Language Frame” presented at the 14th 2017 International

Interdisciplinary Workshop, Daejeon University, on December 21-23, 2017. This research

was supported by the Korea Institute of Science and Technology Information (KISTI).

Also, this work was partially supported by the German Research Foundation (DFG)

within the Collaborative Research Centre, On-The-Fly Computing’’(SFB 901). We

specially thank to Frederik Simon Bäumer for his support.

International Journal of Advanced Science and Technology

Vol.112 (2018)

Copyright ⓒ 2018 SERSC Australia 135

References

[1] A. Hoonlor, B. K. Szymanski, M. J. Zaki and J. Thompson, “An evolution of computer science

research”, RPI Technical Report 12-01, Rensselaer Polytechnic Institute, Troy, NY, (2012).

[2] I. Sommerville, “Software Engineering: (8th Edition) (International Computer Science)”, Addison-

Wesley Longman Publishing Co. Inc. Boston, MA, USA, (2006).

[3] M. Dollmann and M. Geierhos, “On- and Off-Topic Classification and Semantic Annotation of User-

Generated Software Requirements”, Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, S. 1807-1816, Austin, TX, USA, 1. – 5, (2016).

[4] L. Chiticariu, Y. Li and F. R. Reiss, “Rule-based information extraction is dead! long live rule-based

information extraction systems!”, EMNLP. No. October, (2013).

[5] J. D. Palmer, Y. Liang and L. Want, “Classification as an approach to requirements analysis”, Advances

in Classification Research Online 1.1, (1990), pp. 131-138.

[6] Liang and Yiqing, “Software requirements classification: definition, approaches, and applications”,

(1992).

[7] D. Jurafsky and J. H. Martin, “Speech and Language Processing”, 3rd. draft edition, (2015).

[8] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep neural

networks with multitask learning”, Proceedings of the 25th international conference on Machine

learning. ACM, (2008).

[9] R. B. Lees and N. Chomsky, “Syntactic structures”, Language 33.3 Part 1, (1957), pp. 375-408.

[10] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection”, Journal of machine

learning research 3.Mar, (2003), pp. 1157-1182.

[11] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies manual”, Technical report,

Stanford University, (2008).

[12] H. Yang and C. Zong, “Learning Generalized Features for Semantic Role Labeling”, ACM Transactions

on Asian and Low-Resource Language Information Processing 15.4, (2016), p. 28.

[13] V. Punyakanok, D. Roth and W.-T. Yih. “The importance of syntactic parsing and inference in semantic

role labeling”, Computational Linguistics 34.2, (2008), pp. 257-287.

[14] N. Xue and M. Palmer, “Calibrating Features for Semantic Role Labeling”, EMNLP, (2004).

[15] C. D. Manning, P. Raghavan and H. Schutze, “Introduction to Information Retrieval”, Cambridge, UK:

Cambridge University Press, (2008).

Authors

Yeongsu Kim, he is a MS student at University of Science and

Technoloy (UST), Korea and Korea Institute of Science and

Technology Information (KISTI). His research interests include text

mining, natural language processing using machine learning methods.

Seungwoo Lee, he works as a principal researcher at Korea

Institute of Science and Technology Information (KISTI), Korea. He

received his M.S. and Ph.D. degrees in Computer Science and

Engineering from POSTECH, Korea in 1999 and 2005. Previously,

He studied and developed an information retrieval engine and a

named entity recognizer based on Natural Language Processing (NLP)

technologies. And recently he has researched and developed

Semantic Web-related tools such as a triple store, an inference engine

named OntoReasoner, and a SPARQL processor. He has participated

in many Semantic Web-related projects and published as W3C use

cases. His current research interest is horizon scanning and issue

detection based on text mining and big data analysis.

International Journal of Advanced Science and Technology

Vol.112 (2018)

136 Copyright ⓒ 2018 SERSC Australia

Markus Dollmann, he is a PhD student at Paderborn University,

Germany. His research focus is on semantic information processing.

He is especially interested in information extraction methods with

and without using machine learning techniques, data cleansing and

data harmonization approaches as well as information retrieval

systems. During his work for the Collaborative Research Center “On-

The-Fly Computing”, he worked on automated semantic annotation

in user-generated software requirements.

Michaela Geierhos, she heads the chair of digital humanities at

Paderborn University, Germany. Between 2013 and 2017, she was

assistent professor of business information systems, especially

semantic information processing in Paderborn, Germany. After

completing an graduate degree in computational linguistics, computer

science and phonetics at LMU Munich, she worked as a research

associate at LMU’s Center for Information and Language Processing

between 2006 and 2012. In 2010 she completed her doctoral degree

in computational linguistics, for which LMU Munich awarded her a

summa cum laude honor. She has received several awards for her

contributions to research and teaching. For instance, she was named

Professor of the Year 2013 in the category of engineering and

computer science and received the Young Researcher’s Award from

the German Society for Applied Linguistics in 2012. Her research

focus is on natural language processing.

