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Abstract 

Mutualism is one of the major ecological interactions between two species (N1, N2), 

where both species gain benefits via the interactions. In this paper, we have proposed 

mutualism model for the study of dynamical behaviors of two species (N1, N2). Mutualisms 

may exhibit positive feedback in density and qualitative analysis using mathematical 

modeling. The Lotka-Volterra equations include an expression for population change 

where the key parameters are a growth term and a maximum population size (carrying 

capacity). Holling type II has been considered to analyze the proposed model under the 

local stability of the system numerically by using pplane. 
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1. Introduction 

A population is a group of individuals of the same species that occupy a particular area. 

Changes in population sizes and composition result from interactions between individuals 

of the same species, interactions between individuals of different species, interactions 

with the environment, disease, food supply, etc. Interactions can be predatory, 

cooperative, mutualistic, commensural, etc. These changes are expressed in terms of birth 

rates, death rates, immigration rates, and emigration rates. In this paper we concentrate on 

mutualism. Mutualism is an interaction between different species in which they benefit 

each other’s existence. 

The dependency of mutualism refers to how much a species is in need of the 

interaction, we shall define the notes two different types of dependency that are used by 

the ecologist Kot, i.e., Facultative Mutualism is a type of mutualism in which the 

interacting species derive benefit from each other but are not fully dependent that each 

cannot survive without the other. This is the most common type of mutualism and is 

exemplified by plants producing fruits which are eaten by birds and the birds helping to 

dispose the seeds through excretion. Obligate Mutualism is a type of mutualism in which 

the species involved are in close proximity and interdependent with one another in a way 

that one cannot survive without the other. A good example of this is between fungus and 

alga forming lichen [1]. 

Many researchers date the modern era of population dynamics (sometime called as 

population ecology) to 1798 and the publication by Malthus of his treatise \An Essay on 

the Principle of Population" [Malthus, 1798]. Malthus believed that human population 

grows exponentially while the food supply grows linearly, and ferce competition would 

naturally ensue. He argued that unless the population is checked by moral restraint or 

disaster (e.g., disease, famine, or war), widespread poverty and wars would inevitably 

result. In 1838, Pierre Verhulst proposed his logistic model of population growth, where 



International Journal of Advanced Science and Technology 

Vol.103 (2017) 

 

 

36   Copyright ⓒ 2017 SERSC 

population size is limited by a carrying capacity. Other developers of the modern theory 

include Gause, Kermack, McKendrick, Leslie, Lotka, May, MacArthur, Ross, and 

Volterra. 

Mathematical models provide a way to design and evaluate protocols to manage and 

control animal populations, natural resources (e.g., forests), wildlife resources (e.g., 

fisheries, deer population), and infectious diseases. Management requires predictions and 

predictions require models. Wright’s mathematical theory is based on the premise of a 

simple two-species mutualism model in which the benefits of mutualism become 

saturated due to limits posed by handling time. In the models of mutualisms, "type I", 

"type II" and “type III functional response” refer to the linear and saturating relationships. 

In this paper, we try to demonstrate the stability of type II functional response. 

 

2. Assumptions and Model Formulation 

In this paper, the coexistence of two species such as plants (N1) and birds (N2) are 

considered. To develop this model the following assumptions have been made. 

i) N1(t)and N2(t) denotes respectively, the density of plants population and birds 

population at any instant of time t subject to the non-negative initial condition N1(0)= 

N1(0) 0 and N2(0) = N2(0)  0 

ii) The parameter a and k1 be the intrinsic growth rate and environmental carrying 

capacity of plants population and it is also assumed that the growth of plants 

population is logistic. 

iii) The parameter c and k2 be the intrinsic growth rate and environmental carrying 

capacity of birds population and it is also assumed that the growth of birds 

population is logistic. 

iv) The term 
𝑏𝑁1

1+𝑏ℎ𝑁1
  is helping rate by birds. This represents the functional response for 

plants and birds population(Holling type-II functional response) in which the plant’s 

population is benefited and bird’s population needs an average of h time to handle 

plants item. 

v) The parameter’ h’ is average time of response (helping time) of birds. 

Now by using the above assumptions a mathematical model for coexistences of two 

species has been developed as follows. 

 

Model-1. The basic model 

                               
𝒅𝑵𝟏

𝒅𝒕
  =aN1 + bN1 N2 

                                        
𝒅𝑵𝟐

𝒅𝒕
     =cN1 N2 +dN2                 (1) 

Model-2.(Incorporating carrying capacity) 

                             
𝒅𝑵𝟏

𝒅𝒕
  = aN1(1- 

𝑁1

𝐾1
) + bN1 N2 

                    
𝒅𝑵𝟏

𝒅𝒕
   = cN1 N2 +dN2(1- 

𝑁2

𝐾2
)                  (2) 

Model-3(Holling type II-functional response) 

                                       
𝒅𝑵𝟏

𝒅𝒕
  =a N1(1-

𝑁1

𝐾1
)    +(

𝑏𝑁1

1+𝑏ℎ𝑁1
)N2                                                                                                                                     
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𝒅𝑵𝟐

𝒅𝒕
  = dN2(1-

𝑁2

𝐾2
)   + cN1 N2                            (3) 

3. Equilibrium Points 

For establishing the stability of the above models, the equilibrium points are very 

important to analyze any model. Now the possible equilibrium points of the above models 

are given as follows,  

In this model-1 we have only two equilibrium points (i). The first equilibrium point is 

the trivial equilibrium point i.e., E0 =(0,0) (ii).The second equilibrium point is negative 

equilibrium point which is biologically  not interested. 

In this paper we focused only on model-2 and model-3 for analyzing the system. The 

equilibrium points of system (2) are (i). The trivial equilibrium point at which no 

population exists i.e., E10 = (0,0) (ii). The equilibrium point E11= (1,0) in which only 

population one exists (iii).The equilibrium point E12 = (0, 1), in which only population two 

exists and (iv).The equilibrium point E13= (
𝑎𝑑+𝑑𝑏𝑘2

𝑎𝑑−𝑏𝑐𝑘1 𝑘2
, 

𝑎𝑑+𝑎𝑐𝑘1

𝑎𝑑−𝑏𝑐𝑘1 𝑘2
) for ad > bck1 k2  which 

shows the coexistence of population. 

Before going to determine the critical points of the system (3), let us non-

dimensionalise the system by defining 

𝛼 =  
𝑏𝑘2 

a
 ,  𝛽=b h k1 ,𝛾 = 

𝑑

a
  and  𝛿=

𝑘1 𝑐

a
  

Then system (2) becomes 

                          
𝒅𝑵𝟏

𝒅𝒕
 =N1(1-N1) + 

𝛼𝑁1𝑁2

1+𝛽𝑁1
       

                         
𝒅𝑵𝟐

𝒅𝒕
  = 𝛾 N2(1-N2)+ 𝛿 N1 N2                                                   (3.1) 

The trivial equilibrium point E20 =(0,0), in which there is no population. The 

equilibrium point E21 =(0,1), only second  population exists. The equilibrium points 

E22=(1,0),only first population exists. The equilibrium point E23= (
𝐴+√𝐵

2𝛼𝛽
,1+

𝛼

𝛾
(

𝐴+√𝐵

2𝛼𝛽
)) 

occurs only when 𝛼𝛽 > 0, Coexistence of both populations exist in the case of  A=𝛾𝛽 −
𝛾 + 𝛼𝛿 and B = ( 𝛾𝛽 − 𝛾 + 𝛼𝛿)2 +4(𝛾 + 𝛾𝛼)(𝛼𝛽). 

 

4. Stability Analysis 

In this section, let us consider the stability analysis of the deterministic system (2). The 

stability analysis can be determined by the nature of the eigen values of the community 

matrix around each equilibrium m points.  

The community matrix of the system (1) around the equilibrium point is  

  J    =      (
1 − 2N1 +

bk2N2

a

𝑏𝑘2𝑁1

𝑎
𝑐𝑘1𝑁2

𝑎

𝑐𝑘1𝑁1

𝑎
+

𝑑

𝑎
− 2

𝑑𝑁2

𝑎

) 

Theorem.1. The trivial equilibrium point E10 and the boundary equilibrium points E11 and 

E12 are unstable. 

Proof.  The community matrix at E10   is, JE10 =(
1 0

0
𝑑

𝑎

) 

It has an eigen values   𝜆1 = 1 and 𝜆2 =
𝑑

𝑎
 . This indicates that the trivial equilibrium 

point is unstable. The community matrix at E11 is, 
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 J E11 =(
−1

𝑏𝑘2

𝑎

0
𝑐𝑘1+𝑑

𝑎

) and it has an eigen values 𝜆1 = −1 and 𝜆2 =
𝑐𝑘1+𝑑

𝑎
  which shows 

that E11 is saddle point. It is stable in the direction of N1 and unstable in the direction of 

N2. Now for the third equilibrium point E12 the corresponding community matrix of JE12 

=(
1 +

𝑏𝑘2

𝑎
0

𝑐𝑘1

𝑎

−𝑑

𝑎

).The corresponding eigen values are 𝜆1 = 1 +
𝑏𝑘2

𝑎
   and 𝜆2 =

−𝑑

𝑎
 which 

shows that E12 is saddle point. It has stable in the direction of N2 and unstable in the 

direction of N1. 

Theorem -2 .The equilibrium point of  E13 is stable  only if determinant of its community 

matrix is positive, otherwise unstable. 

Proof. The community matrix of the E13 is given as  J𝑬𝟏𝟑 =(
𝑢 𝑣
𝑤 𝑠

), where u= -ad-dbk2  <  

0                       

 S= -cadk1 –ad2 < 0, w =  
𝑐𝑑𝑘1+𝑐2 𝑘1

2

𝑎𝑑−𝑏𝑐𝑘1𝑘2
 >0 and v =  

𝑎𝑑𝑏𝑘2+𝑑𝑏2 𝑘2
2

𝑎(𝑎𝑑−𝑏𝑐𝑘1𝑘2)
  > 0. Now Trace(T) = u+s 

< 0 and  determinant( D )= us-vw 

Then we have different possibilities for D to find the eigen values. 

(i).For D>0, from the characteristics equation we have   𝜆=  
𝑇±√𝑇2−4𝐷

2
 .Again we have 

three sub cases,  

If T2 -4D > 0, both Eigen values are real and negative which imply that it is stable. 

If T2 - 4D < 0 , we can get complex Eigen values in which the real part is negative. The 

stability in this case is sink which is stable.  And if T2 - 4D = 0, we can get repeated root 

which has negative values.  In this case, all Eigen values are negative which imply that at 

this point, the equilibrium points are stable. 

(ii).For D<0, from the characteristics equation we can get that 𝜆1 > 0 and 𝜆2<0 which is 

saddle point. That is unstable from the N1 direction and stable from N2 direction. 

 

5. Numerical Illustration 

In this section, we will see the numerical illustrations of model-2 and model-3 and also 

their dynamical behaviors using MatLab called pplane. Due to unavailability of real data 

of all parameters associated with the model, the hypothetical values to the different 

parameters have been considered as follows: 

Model-2: (Incorporating carrying capacity) 

Consider the parameter values a=1,b=1,c=0.5,d=2,k1 =1 and k2 =1 From this, we can 

see that, for the trivial equilibrium  point E10, we have 𝜆1 = 1  >0 and 𝜆2 =2>0.  So 

according to theorem (1) the trivial equilibrium is unstable. And also from the same data, 

for the boundary equilibrium points E11 ,we have 𝜆1 = −1 < 0 and 𝜆2=2.5>0 and for E12 

,again we have 𝜆1 = 1.5 > 0  and 𝜆2 =-2<0  which imply that both are saddle points 

according to theorem (1), (a).At E11 ,only  N1 exists which is stable and N2  is washed out 

(b). At E12, only N2 exists in stable way and N1 extincts (see Figures 1.1-1.3) 

Again for the parameter values, a=0.5, b=0.8, c=0.5, d=2, k1 =0.5, k2 =1 Then, for the 

equilibrium point E3 = (1.6,1.4), we have 𝜆1 = −1 < 0 and 𝜆2 =-3<0 so according to 

theorem(2) the equilibrium point E3  is stable and Figure 1.4 show that, at this point both 

plants and birds population exist and they can survive by helping each other. There is no 

extinction of population. 
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Model -3 (Holling type II-functional response) 

Consider the parameter values a=3, b=2, c=1, d=3, k1 =2, k2 =1 and h=1 Then from this 

data, let’s show the numerical illustration at the trivial and boundary equilibrium points 

(E20, E21 and E22). By using this data at E20, we have 𝜆1 = 1 > 0 𝑎𝑛𝑑 𝜆2 = 0.1 > 0 which 

is unstable. Originally at E20, we have no population and after we perturb small 

population, they start to grow. And also with same parameters. When we check the 

behavior of plants and birds population at the boundary equilibrium point at E21,  𝜆1  =
2 > 0 𝑎𝑛𝑑 𝜆2 = −1 < 0 and at E22, we have 𝜆1 = −1 < 0 𝑎𝑛𝑑 𝜆2 = 0.3 > 0. Therefore 

the boundary equilibrium point E21 and E22 are saddle points which are unstable. From E21 

we can see that we have only population two which is stable but after we add small 

amount of population one, they start to grow and become saturated. From E22 we can 

understand that, we have only the first population which is stable but after we add small 

amount of the second population, they start to grow and after a time t they become 

saturated. See Figure 2.1-2.3 

Again for the set of parametric values of a=2, b=1, c=0.5, d=2, k1 =1, k2 =2, and h=1 It 

is seen that, E23 =(2.27,1.6), then we have 𝜆1 = −2.66 < 0 and 𝜆2 = −10.733 < 0. So 

fourth equilibrium point is stable. In this case there are different cases for stability 

depending on trace and determinant, but we are checking only for the eigen values real 

and distinct. In this case both plants and birds population exist together Figure 2.4. 

 

 

Figure 1. The Phase Plane Analysis of Model -2 with the Parameters 
a=1,b=1,c=0.5,d=2,k1 =1 and k2 =1 
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Figure 1.1. The Stability Analysis of N1 and N2 versus Time t at the Trivial 
Equilibrium Point E10 with the Parameters a=1,b=1,c=0.5,d=2,k1 =1 and k2 =1 

 

Figure 1.2. The Stability Analysis of N1 and N2 versus Time t at the 
Equilibrium Point E11 with the Parameters a=1,b=1,c=0.5,d=2,k1 =1 and k2 =1 
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Figure 1.3. The Stability Analysis of N1 and N2 versus Time t at the 
Equilibrium Point E12 with the Parameters a=1, b=1,c=0.5,d=2,k1 =1 and k2 =1 

 

Figure 1.4. The Stability Analysis of N1 and N2 versus Time at the 
Equilibrium Point E13 at the Parameters, a=0.5, b=0.8, c=0.5, d=2, k1 =0.5,  

k2 =1 
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Figure 2. The Phase Plane Analysis of Model -3 with the Parameters a=3, 
b=2, c=1, d=3, k1 =2, k2 =1 and h=1 

 

Figure 2.1. The Stability Analysis of N1 and N2 versus Time t at the Trivial 
Equilibrium Point E20 with the Parameters a=3, b=2, c=1, d=3, k1 =2, k2 =1 and 

h=1 



International Journal of Advanced Science and Technology 

Vol.103 (2017) 

 

 

Copyright ⓒ 2017 SERSC   43 

 

Figure 2.2. The Stability Analysis of N1 and N2 versus Time t at the 
Equilibrium Point E21 with the Parameters a=3, b=2, c=1, d=3, k1 =2, k2 =1 and 

h=1 

 

Figure 2.3. The Stability Analysis of N1 and N2 versus Time t at the 
Equilibrium point E22 with the Parameters a=3, b=2, c=1, d=3, k1 =2, k2 =1 and 

h=1 
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Figure 2.4. The Stability Analysis of N1 and N2 versus Time t at the 
Equilibrium Point E23 with the Parameters a=3, b=2, c=1, d=3, k1 =2, k2 =1 and 

h=1 

6. Nullclines Analysis 

The analysis of nullclines gives the more clear visualization of phase plane analysis of 

the models. By dividing the phase plane into regions, then only we can analyse the 

behavior of our dynamics. 

Figure 3. Shows the nullclines analysis of model-2 

Figure 4. Shows the nullclines analysis of model-3 

 

 

Figure 3. The Nullclines of Model -1(Incorporating Carrying Capacity) with 
the Parameters a=1, b=1, c=0.5, d=2, k1 =1 and k2 =1 
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Figure 4. The Nullclines Analysis of Model-2 (Holling type II functional 
response) 3 with the Parameters a=3, b=2, c=1, d=3, k1 =2, k2 =1 and h=1 

7. Conclusions 

In this paper, we have proposed a mathematical model of mutualism in which the 

coexistence of two species (plants and birds) is investigated. Few different models are 

considered and the stability behavior of two species of mutualism discussed around each 

equilibrium points. We illustrated the models numerically by using different parameters. 

We also saw the nullcline analysis of each model of plant’s population versus bird’s 

population. The trajectories of the model at each equilibrium point are illustrated with 

respect to (i). Plant’s population versus time & (ii). Bird’s population versus time for each 

model. 
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