
International Journal of Advanced Science and Technology
Vol. 23, October, 2010

41

Modeling Real-Time applications with Reusable Design Patterns

Saoussen Rekhis, Nadia Bouassida,

Rafik Bouaziz

MIRACL-ISIMS, Sfax University, BP

1088, 3018, Sfax, Tunisia.

{saoussen.rekhis,

Raf.bouaziz}@fsegs.rnu.tn

nadia.bouassida@isimsf.rnu.tn

 Claude DUVALLET,

Bruno

SADEG

LITIS, UFR des Sciences et

Techniques, BP 540, 76 058, Le

Havre Cedex, France.

claude.duvallet@univ-lehavre.fr

bruno.sadeg@univ-lehavre.fr

Abstract

Real-Time (RT) applications, which manipulate important volumes of data, need to be

managed with RT databases that deal with time-constrained data and time-constrained

transactions. In spite of their numerous advantages, RT databases development remains a

complex task, since developers must study many design issues related to the RT domain. In

this paper, we tackle this problem by proposing RT design patterns that allow the modeling of

structural and behavioral aspects of RT databases. We show how RT design patterns can

provide design assistance through architecture reuse of reoccurring design problems. In

addition, we present an UML profile that represents patterns and facilitates further their

reuse. This profile proposes, on one hand, UML extensions allowing to model the variability

of patterns in the RT context and, on another hand, extensions inspired from the MARTE

(Modeling and Analysis of Real-Time Embedded systems) profile.

Keywords: UML notation, specific domain design patterns, patterns reuse, real-time

applications.

1. Introduction

Within the software engineering community, reuse of patterns has long been

advocated as an efficient technique to have more profitable and less expensive software

applications. With reusable patterns, the design of a new application consists in

adapting the existing patterns, instead of modeling one from the beginning.

The need of reuse is confirmed in the field of Real Time (RT) applications which are

often considered difficult to design and to implement. In fact, several works have tried

to benefit from software reuse in order to develop RT applications. Some works define

reusable software components, such as the model of RTCOM components in the

ACCORD project [1]. Other works propose RT patterns that provide solutions to

recurrent problems of real-time systems (management of resources, distribution,

concurrency, and so on) [2]. However, these propositions are not interested in the

design of RT databases and the proposed “patterns” remain at a too high level of

abstraction to provide for a real design reuse. In fact, a RT database is a database in

which both the data and the operations upon the data may have timing constraints [3].

Thereby, its design differs from the design of conventional databases and needs the

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

42

capitalization of RT designer’s expertise to have high quality and faster software

development.

Currently, the demand for RT databases has increased, essentially for applications

where it is desirable to execute transactions within their deadlines. Moreover, in order

to maximize the number of transactions which meet their deadlines and support

freshness of data, several works based on quality of service guarantee, propose to use

multi-versions RT data [4] [5]. This reduces data access conflicts between transactions,

enhances the concurrency and limits the deadline miss ratio. For this reason, the design

of RT databases must support the modeling of multi-versions RT data.

In order to improve and facilitate the RT databases design, we propose in this paper

two real-time design patterns. The first is the sensor, which focuses on the design of the

generic data stored in RT databases. The second is a modified version of the sensor

pattern supporting the multi-versions RT data. These patterns are presented using an

UML profile for RT design patterns. This profile offers new stereotypes and expresses

the variability and flexibility of the RT domain, in order to be instantiated for various

applications. It adapts, also, some MARTE (Modeling and Analysis of Real-Time

Embedded systems) [6] profile stereotypes modeling RT aspects at a high abstraction

level.

The remainder of this paper is structured as follows. Section 2 presents the related

work. Section 3 presents our UML profile which facilitates RT design patterns

comprehension and instantiation. Section 4 illustrates the application of this profile

through the specification of a RT sensor pattern and a modified version of this pattern

that supports multi-version RT data design. Section 5 presents examples of reusing the

proposed RT design pattern to model specific applications. Section 6 concludes the

paper and gives some perspectives.

2. Related work

Software reuse has long been practiced by software engineers but has traditionally been

restricted to the code level: the reuse of individual routines or modules implementing

recurring functions. More recently, software engineers have recognized that reuse can take

place at a higher abstraction level which is the design level. Design patterns encapsulate

reusable design and therefore allow to improve the quality of design.

Works which are interested in developing RT applications with reusable designs, propose

patterns intended for real-time systems, called RT patterns. Among these latter, there are the

patterns proposed by Douglass [2] and by Schmidt [7]. Douglass proposes architectural

patterns, which present solutions to manage concurrency (e.g. Round Robin pattern, Message

Queuing pattern, etc.), resources (e.g. Critical Section pattern, Priority Inheritance pattern),

distribution (e.g. Broker pattern, Proxy pattern) and security. He proposes also the

mechanistic patterns which refine the architectural patterns and deal with the objects

collaborations optimization.

Also within this context, Schmidt [7] defines patterns classified into four categories: the

patterns of concurrency for multi-thread systems (e.g. a thread per object pattern), the

patterns of event (e.g. a thread per request pattern, Reactor pattern and Asynchronous

completion token pattern), the patterns of initialization (e.g. Acceptor-Connector pattern,

Configuration pattern service, etc.) and finally the patterns of synchronization. These patterns

offer solutions to manage concurrency, memory, resources, parallelism, distribution and

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

43

security of real-time systems. However, they do not deal with the RT databases modeling

problems.

Other works [13] [14] are interested in defining analysis patterns that provide facilities

to model functional requirements of RT systems. The analysis patterns proposed by

Konard [13] tend to have an inclination to focus primarily on either the structural or

behavioral phase of object analysis. They are intended for the embedded systems

developers to assist them in defining the relations between the entities of such systems and

presenting their behavior in abstract design models. The drawback of these models is that

they hide the internal characteristics of the entities, i.e. their attributes and operations. That

is, the presented patterns do not assist the RT developers in defining the essential data that

must be stored in a RT database. Moreover, they are not intended for the modeling of RT

constraints that must be fulfilled by RT data and transactions.

3. The UML profile for RT design patterns

During the specification of RT design patterns, several criteria have to be taken into

account: expressivity, variability and definition of constraints. These criteria are considered,

in order to have better quality, flexible and more understandable patterns.

In fact, any design language for patterns should be an expressive visual notation based on

UML to be easily understood by designers. It should, also, guide the user when adapting a

pattern to a specific application. Moreover, it has to express variability in order to determine

the variable elements that may differ from one pattern instantiation to another. The correct

instantiation of patterns depends on respecting the properties inherent to the solution. These

properties are specified by constraints that are generally expressed in OCL (Object Constraint

Language) [8].

In the following, we present some UML 2.1.2 [9] basic concepts expressing the variability

in the static and behavioral views. Then, we extend this modeling language to specify and

instantiate RT design patterns.

In fact, several UML basic concepts express variability in the class diagram (i.e.

generalization relationship, constraints interface and template). The generalization

relationship represents variation points which are defined by an abstract class and a set of

subclasses that constitute the different variants. At least, one of these subclasses is chosen in a

pattern instantiation. There are two types of UML constraints that can be applied on the

generalization relation:

- {incomplete}: this constraint indicates that the design provides only a sample of

subclasses and that the user may add other subclasses in an instantiation.

- {xor}: this constraint indicates that the designer must choose one and only one variant

among the presented subclasses during the instantiation.

In the sequence diagram, an interaction sequence can be grouped into an entity, called

combined fragment. This latter defines a set of interaction operators, particularly (alt:

alternative) and (opt: optional) operators. The interaction operator (alt) indicates that a set of

interactions are alternative. It is used with an associated guard that informs the user that only

one set of interactions will be chosen. While the interaction operator (opt) indicates that a set

of interactions represents an optional behavior that can be omitted in a model instance.

Specific domain design pattern are generic designs intended to be specialized and reused

by an application. For this reason, we need new notations distinguishing the pattern’s

common elements which must be kept by any application from the variable elements which

change from an application to another. Moreover, when several patterns are instantiated to

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

44

design an application, we must differentiate, clearly, among the elements belonging to each

design pattern. Thus, we need new concepts for the explicit representation of the pattern

elements roles that can assist on the traceability of a pattern.

In the design of a specific domain, the design language must also take into account the

specificities of the domain itself. Thereby, the notations used for the representation of patterns

intended for RT domain must support the modeling of RT applications characteristics.

In the next section, we describe the extensions that we propose to take into account these

new concepts.

3.1. Extensions for specifying and instantiating design patterns

We propose new stereotypes distinguishing the optional and fundamental elements

participating in a pattern on the one hand, and showing how to compose and to delimit the

different patterns in a design of a specific application, on the other hand. Thus, the class and

interaction diagrams Meta-models are extended with the stereotypes described in the table 1.

3.2. The profile Metamodel

The design pattern profile metamodel shows the extensions proposed to some meta-classes

belonging to the class diagram and interaction diagram metamodels. In order to model RT

aspects, the proposed profile imports stereotypes from HLAM (High Level Application

Modeling) and NFP (Non Functional Properties) sub-profiles of MARTE [6] (cf. figure 1).

From HLAM sub-profile, we import the <<rtFeature>> stereotype in order to model

temporal features. This stereotype extends the meta-classes: message, action, signal and

behavioral features. It possesses nine tagged values among which: relD1 (i.e. specification of

a relative deadline), absD1 (i.e. specification of an absolute deadline), Miss (i.e. percentage of

acceptance for missing the deadline), occKin (i.e. specification of the type of event: periodic,

aperiodic or sporadic)… . We propose to annotate each model element that has real-time

features with the previously described stereotype.

From NFP Modeling sub-profile of MARTE, we import two stereotypes: <<Nfp>> and

<<NfpType>>. The first one extends the Property metaclass. It shows the attributes that are

used to satisfy non functional requirements. The second stereotype extends the DataType

metaclass. There is a set of pre-declared NFP_Types which are useful for specifying NFP

values, such as NFP_Duration, NFP_DataSize and NFP_DataTxRate.

In the following section, we illustrate the RT pattern profile through the specification of a

RT sensor pattern.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

45

Table 1. Proposed stereotypes for specifying and instantiating design patterns

 Stereotype Signification
P
a
tt
e
rn
 s
p
ec
if
ic
a
ti
o
n

<<optional>>

applied to the

Feature UML

Metaclass.

This stereotype is used to specify optional features in UML

class diagram. When an attribute (or method) is stereotyped

<<optional>>, then it can be omitted in a pattern instance.

Each method or attribute which is not stereotyped

<<optional>> in a fundamental class means implicitly that it is

an essential element, i.e. it plays an important role in the

pattern.

All the attributes and methods of an optional class are

implicitly optional.

<<mandatory>>

applied to the UML

Metaclasses: Class,

Association,

Interface, Lifeline,

ClassAssociation.

This stereotype is used to specify a fundamental element

(association, aggregation,…) that must be instantiated by the

designer when he models a specific application.

A fundamental element in the pattern is drawn with a highlight

line like this class . Each instance of a core class defined

in the class diagram is presented with a mandatory lifeline in

the interaction diagram. Besides, each pattern element which

is not highlighted means that it is an optional one, except the

generalization relation that permits to represent alternative

elements.

<<extensible>>

applied to the UML

Metaclasses: Class,

Interface and

ClassAssociation.

This stereotype is inspired from {extensible} tagged value

proposed in [10]. It indicates that the class interface may be

extended by adding new attributes and/or methods. Moreover,

we propose to define two properties for the extensible

stereotype specifying the type of element (attribute or method)

that may be added by the designer.

 - extensibleAttribute tag: It takes the value false, to indicate

that the designer cannot add new attributes when he

instantiates the pattern (cf. Figure 2, Measure class).

Otherwise, this tag takes the value true.

 - extensibleMethod tag: It indicates that the designer cannot

add new methods when instantiating the pattern if it takes

the value false. The default value is true.

P
a
tt
e
rn
 i
n
st
a
n
ti
a
ti
o
n
 <<patternClass>>

applied to the Class

UML metaclass.

Each class, stereotyped <<patternClass>>, in a specific

application indicates that it is a pattern class. Two properties,

relative to this stereotype, are defined:

- patternName tag : indicates the pattern name,

- participantRole tag : indicates the role played by the class

in a pattern.

<<patternLifeline>>

applied to the

Lifeline UML

metaclass

This stereotype is used to distinguish between the objects

instantiated from the pattern interaction diagram and those

defined by the designer. This stereotype has the same

properties than <<patternClass>> stereotype.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

46

4. RT sensor pattern

RT applications that have to be managed by RT databases perform several RT processes.

We distinguish among these processes: the RT data acquisition, their control and their RT

use. We focus in this paper on modeling data used in the acquisition process through the

definition of the RT sensor pattern. This pattern takes into account the acquirement of data

from the environment according to two views:

- A static view, which describes the entities, their relationships and the manipulated data

that must be stored in the RT database. Each data can be either a classic data or a RT data that

has validity interval, beyond which it becomes useless [3].

- A dynamic view, which describes the invocations of methods between the identified

entities. Each method execution is considered as a transaction that may be composed of one

or many sub-transactions. These methods can be periodic, sporadic or aperiodic. A periodic

method updates periodically data acquired from the sensor, called base data [3]. The

execution of a periodic method must be achieved before the deadline; otherwise the value to

be written will be considered obsolete. A sporadic method updates the derived data that is

calculated from base data [3]. Finally, an aperiodic method allows to read/write classical data

and to read, only, RT data.

4.1. RT sensor pattern specification

 Instantiation pattern Extensions

 Specification pattern Extensions

Figure 1. RT pattern profile metamodel

RT patterns profile

MARTE :: HLAM sub-profile MARTE :: NFP sub-profile

 <<import>> <<import>>

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

47

All RT applications depend on the use of sensors to acquire data from the environment. A

sensor is defined as a device that measures or detects a physical phenomenon (temperature,

pressure, speed, etc.). This detected measure is usable for command ends.

- Interface:

Name: sensor pattern.

Context: Real time applications which need to exploit RT databases.

Intention: The pattern aims to model RT data stored in the RT database and to identify RT

constraints related to both: RT data and method that permits their update.

- Solution:

Static specification: Figure 2, presented below, presents the sensor pattern static view.

Participants:

- Sensor: The sensors are classified into passive, active, fixed or mobile sensors. Thus,

these types of sensors constitute the variations of the sensor abstract class. In fact, an active

sensor takes the transmission initiative of its current value (push mechanism). It must be able

to transmit a signal setValue to one object or to a group of objects in order to update the value

of a measure. While a passive sensor transmits its value only on the demand of an operator

(pull mechanism). It has a method getValue to read the current value. In addition, a mobile

sensor allows getting measures at different positions.

- Location: it is an optional class. It can be omitted, when instantiating a pattern,

essentially, if the modelled system manages a limited number of fixed sensors and their

positions are known to the developer. However, it is important to know the mobile sensor

location when acquiring a measure. For this reason, we define an OCL constraint related to

the MobileSensor subclass in order to indicate that the designer must instantiate the Location

class when he chooses the mobile sensor alternative.

- Measure: this class exists in all RT applications, thus it is a fundamental class drawn

with a highlighted line in a RT sensor pattern. It permits to store RT data that are classified

into either base data or derived data. Base data are issued from sensors, whereas derived data

are calculated from base data. They have the same characteristic of base data (value,

timestamp, unit,…). The refreshment of each derived data is required every time one of the

base data is updated. In addition, the validity duration of derived data is the intersection of

validity duration of every used base data. The relation between base and derived RT data is

represented by a reflexive association defined on the Measure class. This association is

optional, since it can be omitted in a pattern instantiation, in case the designed application

does not have derived measures. However, the association between the Sensor and Measure

classes is fundamental because we have to know, for every RT application, the origin of the

different values taken from sensors to control the system.

The measure class has an attribute: value, containing the final value captured by the related

updateValue () method. It has also an attribute: timestamp, containing the last time at which

the measure's value was updated [11] or when this value is produced. The timestamp attribute

has DateTime type supported by MARTE profile. It is used to determine whether or not

timing constraints have been violated. Moreover, a measure is characterized by a unit and

eventually a minimum value and a maximum value that defines the interval for which the

system does not detect an anomaly. Each measure is also characterized by the validity

duration that represents the time interval during which a measure’s value is considered valid.

This interval determines, in association with the timestamp attribute value, the absolute

consistency of RT data. In fact, the measure’s value is considered absolutely consistent

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

48

(fresh) with respect to time as long as the age of the data value is within a given interval [11].

The age represents the duration between the timestamp and the current time.

Figure 2. Static specification of the sensor pattern

In addition to the need of fresh data, RT applications have to use precise data in order to

reflect the continuous change of the external environment. However, it seems to be difficult

for the transactions to both meet their deadlines and to keep the database consistent. For this

reason, the quality of data concept is introduced in [5] to indicate that data stored in RT

databases may have some deviation from its value in the real world. Thereby, each measure is

characterized by the Maximum Data Error (MDE) attribute that represents a non functional

property specifying the upper bound of the error. This attribute allows the system to handle

the unpredictable workload of the database since an update transaction Tj is discarded if the

deviation between the current data value and the updated value by Tj is less or equal to MDE.

We propose to associate the <<NFP>> stereotype of MARTE profile to the MDE attribute.

This attribute is of the same type as the value attribute.

The attributes (timestamp, validity duration, and maximum data error) defined in this class

present the RT data characteristics that must be taken into account in order to support data

time semantics and imprecise computations.

- Observed_element: this class represents the description of a physical element that is

supervised by one or more sensors. It can be an aircraft, a car, volcanoes phenomenon, and so

on. In fact, one or more measure types (i.e. Temperature, Pressure, etc) of each observed

element could determinate its evolution.

Dynamic specification: Figure 3 presents the sensor pattern dynamic view.

Xor Xor

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

49

In the dynamic specification of the sensor pattern, we are interested in modeling the

RT update transactions and their deadline timing constraints. These transactions are

modeled through the invocation and the execution of the updateValue() method of the

Measure class.

Whatever the type of event message of the sensor is (synchronous or asynchronous),

the updateValue() method allows to change the current value of a measure by

considering the result returned by the method getValue() or the attribute given as a

parameter of the setValue() signal.

On the other hand, the stereotype: <<rtFeature>> and the tagged value: occKind,

defined in MARTE, are associated to the updateValue()method in order to indicate if it

is periodic or sporadic. In fact, it is periodic when it sets a base measure’s value,

whereas it is sporadic when it sets a derived measure’s value. Moreover, this stereotype

indicates also that the update method has relative and absolute deadlines specified

respectively through relDl and absDl tagged values.

Figure 3. Dynamic specification of sensor pattern

4.2. RT sensor pattern supporting multi-version RT data

In order to preserve data version history, we present in this section a RT sensor

pattern supporting multi-versions RT data.

In fact, the multi-versions data allows to maintain for every measure type (velocity,

altitude, and so on) multiple versions for a data item. This reduces data access conflicts

[If passive sensor]

[If active sensor]

<<rtFeature>>

<<rtFeature>>

<<rtFeature>>

<<rtFeature>> CalculateDerivedValue ()

OccurenceKind is Periodic

and period = periodicity

OccurenceKind is Periodic

and period = periodicity

OccurenceKind is Sporadic

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

50

between transactions and, then, limits the deadline miss ratio [5]. In fact, most conflict

cases come from incompatible accesses when an update transaction wants to modify a

data item (i.e. measure’s value attribute), accessed by transaction user. The Multi-

version technique is used to alleviate this risk through the creation of new versions.

However, the number of versions of each RT data is limited. It does not have to exceed

a threshold which is a maximum data versions number [5], in order to respect the RT

database size.

Table 2 illustrates an example of three versions for the Speed measure. The values of

the validity duration and Maximum Data Error attributes are the same for all versions.

But, the values of the timestamp attribute changes for each version of speed measure.

For this reason, we propose two categories of data which can improve the RT

processing: static data which does not change during the measurement time and

dynamic data which represents variable information in time. This classification is

carried out according to the evolution of data in time.

To take into account this classification in the sensor pattern, the attributes of

Measure class must be modelled by two classes: the first one specifies static

characteristics of each measure type, whereas the second class stores dynamic RT data

acquired from sensors.

In the following, we present the description of these classes:

- The Measure-type class contains the attributes: description, validity duration, maximum data

error, minimum value, maximum value and unit of measure. It contains, also, a new attribute

which is the maximum data versions number. This latter is related to the non functional

requirements specification and is stereotyped with <<Nfp>>. Moreover, we define an OCL

constraint relative to the MeasureType class and indicating that the number of Measure class

instances (i.e. the number of version) associated to each MeasureType instance must be less

than the maximum data versions number.

- Measure class contains value and timestamp attributes to take into account the evolution of

measure’s value and preserve the timestamp of each measure version.

On the other hand, when using a mobile sensor, the position in which each data version is

taken, must be stored in the RT database. Thus, the association between the Measure and the

Location classes is compulsory. However, in the case of using a fixed sensor, indicating the

location of this sensor is sufficient information. Afterward, all the data versions relative to

this sensor are taken in the same location. In this latter case, the association between Sensor

and Location classes may be essential when the designed system uses many fixed sensors.

We illustrate in Figure 4 the modifications brought to the sensor pattern class

diagram, in order to model the muti-versions RT data.

Table 2. Example of multi-versions measure.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

51

Figure 4. RT sensor pattern supporting multi-versions data

5. RT design patterns instantiation examples

RT design patterns are intended to be instantiated to design specific RT applications. This

section proposes two RT applications reusing RT design patterns: the air traffic control

system and freeway traffic management system. The first example instantiates the RT sensor

pattern and the second reuses the RT sensor pattern that supports multi-version data.

5.1. Air traffic control system example

We present, in this section, the air traffic control example which is an instantiation of the

sensor design pattern. The air traffic control application uses a large collection of data

describing the aircrafts, their flight plans, and environment data [15]. This includes flight

information, such as aircraft identification, altitude, position, speed, origin, destination, route

and clearances.

Figure 5 illustrates the static view of the air traffic control application. The design of this

application is facilitated by the reuse of the RT sensor pattern. In fact, the designer

instantiates first the elements that play a significant role in the sensor pattern (drawn with a

highlight line in Figure 2) and substitutes them by specific elements adapted to the context of

the air traffic control application. Then, he identifies the variation points presented in the

pattern by super classes and chooses the appropriate variants.

Xor Xor

Xor

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

52

Figure 5. The air traffic control application design

In the case of the air traffic control application, the Measure and Sensor classes are

instantiated respectively by the Aircraft_Measure and Active_Sensor classes. The

Active sensor alternative is chosen because we suppose that all sensors used in this

application can publish their values spontaneously. Note that, altitude, speed, location

and path constitute instances of Aircraft_Measure class. In addition, the Aircraft class

represents the instance of the Observed_element class. After that, the optional elements

of the application domain are identified in order to determine those that can be omitted.

In our case, the optional reflexive association, modeling the relation between the base

and derived measures, is instantiated. In fact, each aircraft has three basic measures

which are speed, altitude and location and one derived measure which is aircraft path.

The basic measures are periodically updated to reflect the state of an Aircraft. The

derived measure is calculated based on altitude and location values, in order to verify if

the aircraft deviates from a predetermined path.

Moreover, the pattern name and the role played by each pattern class are indicated by

using respectively the tagged values patternName and participantRole of the stereotype

<<patternClass>>. For example, the instantiated class Aircraft_Measure plays the role

of a Measure in the Sensor pattern. Thus, the patternName tag value is sensor and the

participantRole tag value is Measure.

Finally, specific elements related to the designed application are added. New

attributes (or methods) can be added only for the pattern classes stereotyped

<<extensible>>. Notice that in the air traffic control application, instantiating the

sensor pattern, some attributes and classes, specific to this application, are added:

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

53

• Attributes characterizing the aircraft (e.g., place_number and maximum_weight capacity)

since the corresponding observed_element class in the sensor pattern is declared extensible

and

• The class "Flight-plan" which indicates the starting and destination airport, the flight

duration and so on.

5.2. Freeway traffic management system example

The increasing road transport traffic and the incessant rise of the number of vehicles

have caused a great growth of the magnitude of traffic flows on public roads. In

consequence, freeway traffic management systems have become an important task

intended to improve safety and provide a better level of service to motorists. We

describe, in the following an example of a freeway traffic management system:

COMPASS [12]. We focus precisely on modeling the compass acquisition data

subsystem and we explain how this design issue can be facilitated by the reuse of the

RT sensor pattern supporting multi-versions data. This pattern is chosen since the

COMPASS system stores historical traffic data at different times, for retrieval and

analysis purposes.

The current traffic state is obtained from the essential sources: inductance loop

detectors and supervision cameras. In fact, vehicle detector stations use inductance

loops to measure speeds and lengths of vehicles, traffic density (i.e. number of vehicles

in a road segment) and occupancy information. These processed data are then

transmitted at regular time intervals to the Central Computer System. Whereas, the

supervision cameras are used to supplement and confirm the data received through the

vehicle detector stations and to provide information on local conditions which affect the

traffic flow. The computer system uses the acquired data stored in a real time database

to monitor traffic and identify traffic incidents, when they occur.

Figure 6 illustrates the class diagram of the COMPASS system reusing RT sensor

pattern supporting multi-version data.

First, the fundamental elements of the pattern are instantiated. Thus, the

Measure_Type, Measure, Sensor and Observed_element classes are instantiated

respectively by InfoTraffic_MeasureType, InfoTraffic, ActiveSensor, Vehicle and

RoadSegment classes of the freeway traffic management system. The vehicles and road

segments represent the physical elements that are supervised by sensors. Moreover, the

sensors used in the COMPASS system can publish their acquired data spontaneously

every twenty seconds. For this reason, the active sensor alternative is chosen.

For each measure taken from the environment of this system and stored in the

database, the designer must specify the value, the timestamp and the validity interval to

verify the temporal consistency of traffic collected data. For example, the value of the

vehicle speed measure is temporally consistent as long as it is no more than twenty

seconds. In addition, the designer must specify the minimum and maximum thresholds

of each taken measure in order to determine the abnormal values for which the

COMPASS system may detect an incident. Thereby, vehicle speed, vehicle length,

traffic volume and occupancy constitute the instances of InfoTraffic_MeasureType

class. The value evolution of each measure type is stored in the InfoTraffic class. The

speed and length measures are relative to the Vehicle class. Whereas, the traffic density

and occupancy measures are relative to the RoadSegment class.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

54

Finally, specific elements relative to the application domain are added to the design.

In our case, some elements specific to the freeway traffic management application, are

added:

• a composition relation between the ActiveSensor class and RoadSegment class in order to

determine the Vehicle detector stations and supervision cameras placed in each road

segment and

• a RoadLink class with a num_link attribute. This class indicates the segments that

compose each road link through the composition relation defined between RoadSegment

and RoadLink classes.

Figure 6. The freeway traffic management application design

6. Conclusion

The reuse technique allows to capitalize the knowledge of the experts and to reduce

software development complexity. In this paper, we proposed an approach based on reusable

design patterns to reduce the complexity of RT databases modeling. These patterns help

designers to develop RT applications expressing time-constrained data and time-constrained

methods.

Besides, we propose UML-based extensions expressing the variability and tracing design

patterns. This leads to have common standard notations for defining RT design patterns. This

allows patterns to be exchanged among designers in a more readily manner, consequently to

improve RT design models.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

55

Our future works include: 1) the definition of additional patterns in order to model other

aspects of RT databases; 2) the integration of the design patterns in the context of model

driven architecture in order to add more assistance when generating models by reusing

patterns. This could bring new benefits and impulse for both the knowledge capturing

techniques and the software development process quality.

References

[1] Tesanovic J. A., Nystrom D. and Norstrom C., Towards aspectual component-based development of real-

time systems. Proceedings of the 9th Inter. Conf. of Real-Time and Embedded Computing Systems and

Applications (RTCSA’03), pp. 558-577, 2003.

[2] Douglass B. P., Real-Time Design Patterns: Robust Scalable Architecture for Real Time Systems, Addison-

Wesley Edition, September 27, 2002.

[3] Ramamritham K., Son S., and DiPippo L., Real-Time Databases and Data Services. Real-Time Systems,

pp. 179–215, 2004.

[4] Bouazizi E., duvallet C., Sadeg B., Multi-Versions Data for improvement of QoS in RTDBS, Proceedings of

the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA’05), 2005.

[5] Amirijoo M., Hansson J., and Son S. H., Specification and management of QoS in real-time databases

supporting imprecise computations. IEEE Transactions on Computers, 55(3), 2006.

[6] OMG, A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded systems, OMG

document number: ptc/2008-06-09, 2008.

[7] Schmidt D. C., Stal M., Rohnert H. and Buschmann F., Pattern-Oriented Software Architecture: Patterns for

Concurrent and Networked Objects, Wiley & Sons, 2000.

[8] OMG, UML 2.0 OCL specification, 2003.

[9] OMG, Unified Modeling Language (UML) Infrastructure, v2.1.2, formal/2007-11-04, November 2007.

[10] Bouassida N., Ben-Abdallah H., Extending UML to guide design pattern reuse, Sixth Arab International

Conference On Computer Science Applications, Dubai, 2006.

[11] Ramamritham K., Real-Time Databases. Journal of Distributed and Parallel Databases, 1(2):199–226, 1993.

[12] COMPASS Website, Available from: http://www.mto.gov.on.ca/english/traveller/compass/main.htm.

[13] Konard S.J., Cheng B H.C. and Campbell L. A., "Object Analysis Patterns for Embedded Systems", IEEE

Transactions on Software Engineering, Vol. 30, No. 12, December 2004.

[14] Jawawi D., Deris S., and Mamat R.. Software Reuse for Mobile Robot Applications Through Analysis

Patterns, The International Arab Journal of Information Technology, Vol. 4, No. 3, 2007.

[15] Locke D., Applications and system characteristics. In Real-Time Database Systems: Architecture and

Techniques, pages 17–26. Kluwer Academic Publishers, 2001.

International Journal of Advanced Science and Technology
Vol. 23, October, 2010

56

