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Abstract 

The kmeans algorithm is an unsupervised classification algorithm. It has some drawbacks, the 

number of classes has to be known a priori, the initialization phase and the local optimums. We present 

in this paper an improvement based on evolutionary strategies and on the Xie and  Beni criterion in 

order to get around these three difficulties. We design a new evolutionist kmeans algorithm. We 

suggest a new mutation operator that allows the algorithm to avoid local solutions and to converge to 

the global solution in a small computation time. We have optimized the Xie and Beni criterion by 

evolutionary strategies for the optimal choice of the number of classes. The proposed method is 

validated on several simulation examples. The experimental results obtained show the rapid 

convergence and the good performances of this new approach.  
 
Keywords.  Classification, evolutionary strategies, kmeans algorithm, evolutionist kmeans algorithm, 

new mutation operator, Xie and Beni criterion. 

 

1. Introduction  

The kmeans algorithm (KM) is an unsupervised classification method [1,2,3,4]. However the KM 
algorithm requires the a priori determination of the number of classes [3,5] and suffers from the 
initialization phase and the local optimums [6,7,8,9,16,17]:  

- This algorithm requires the optimal choice of the classes number. This optimal choice guides 
the algorithm to provide a partition with the smallest error value possible. 

- This algorithm converges in a finite number of iterations but the solution depends on the 
initial values. Indeed, if we reinitialize the algorithm with other values, it may converge to an 
other local solution, which may be different from the first one. 

We present in this work some improvements to this algorithm based on the evolutionary strategies and 
the Xie and Beni criterion in order to get around these three difficulties. We designed a new 
evolutionist kmeans algorithm (EKM) which has many advantages over the conventional KM 
algorithm. These are viewed in its generality, its parallelism and the genetic operations. The KM 
algorithm deals with one solution at each iteration, while the proposed EKM algorithm deals with a 
population of solutions in the same time. These solutions are subjected, during the iterations steps, to a 
Gaussian perturbation, which makes it then possible to avoid the local solutions. We propose a new 
mutation operator in order to control the Gaussian disturbance level and to reduce the computation time 
required to converge towards the global solution. We optimized Xie and Beni criterion by evolutionary 
strategies for the optimal choice of the number of classes. 

Section 2 introduces the evolutionary strategies. In section 3, we give some definitions, and recall 
the KM algorithm. Section 4 describes our evolutionist KM algorithm. In section 5, we present the Xie 
and Beni criterion, and we optimize this criterion by evolutionary strategies. This will make it possible 
to avoid the drawbacks of this criterion. While in section 6, the performances of this new method are 
evaluated by some experimental results.  
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2. Evolutionary strategies   

Evolutionary strategies (ES) are particular methods for optimizing functions. These techniques are 
based on the evolution of a population of solutions which under the action of some precise rules 
optimize a given behavior, which initially has been formulated by a given specified function called 
fitness function [9].  
  
An ES algorithm manipulates a population of constant size. This population is formed by candidate 
points called chromosomes. Each of the chromosomes represents the coding of a potential solution to 
the problem to be solved, it is formed by a set of elements called genes, these are reals.  

  
At each iteration, called generation, is created a new population from its predecessor by applying the 
genetic operators: selection and mutation. The mutation operator perturbs with a Gaussian disturbance 
the chromosomes of the population in order to generate a new population permitting to further optimize 
the fitness function. 
This procedure allows the algorithm to avoid the local optimums. The selection operator consists of 
constructing the population of the next generation. This generation is constituted by the pertinent 
individuals [3,9].  
Figure 1 illustrates the different operations to be performed in a standard ES algorithm [9,10]:  
  

Random generation of the initial population 
Fitness evaluation of each chromosome 
Repeat 

     Select the parents 
     Update the genes by mutation 
     Select the next generation 
     Fitness evaluation of each chromosome 
Until Satisfying the stop criterion 

Figure 1: Standard SE algorithm. 

 

3. kmeans classification   

3.1. Descriptive elements   

Consider a set of M objects {O1, O2,..., OM} characterized by N attributes, grouped in a line vector form 
V = (a1 a2 ... aN). Let Ri = (aij) 1≤j≤N be a line vector of RN where aij is the value of the attribute aj for the 
object Oi. Let mat_obs be a matrix of M lines (representing the objects Oi) and N columns (representing 
the attributes aj): 

     ( )
Nj

Miijaobsmat
≤≤

≤≤=
1

1_                               (1) 

V is the attribute vector, Ri is the observation associated with Oi or the realization of the attribute 
vector V for this object, RN is the observations space [1] and mat_obs is the observation matrix 

associated with V. The ith line of mat_obs  is the observation Ri. Ri belongs to a class CLs, s=1, …, C. 

3.2. kmeans algorithm   

The kmeans algorithm is one of the most common algorithms used for the classification. We are given 
maxobs observations (Ri)1≤i≤M which must be associated with C classes (CLs)1≤s≤C of centers (gs)1≤s≤C. 
The centers (gs)1≤s≤C are line vectors of N dimension.  
The kmeans is based on the minimization of the optimization criterion given by  [2,3,4  ]:    
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where  . is a distance which is generally supposed to be Euclidean.   

  
The KM algorithm supposes that the number of classes C is known a priori.  
Figure 2 gives the KM algorithm flowchart [3,4]:  

  
1. Fix the number of classes C. 
2.  Initialize the centers at random values in the 

observation space 
3. Assign the observations to classes having the 

closest centers. 
4. Update the class centers 
5. Stop the algorithm when the centers do not 

change, if not go to 3. 

 
Figure 2: Flowchart  of the KM algorithm. 

4.  Evolutionary kmeans classification  

4.1. Proposed coding    

The KM algorithm consists of selecting among all of the possible partitions the optimal partition by 

minimizing a criterion. This yields the optimal centers (gs)1≤s≤C. Thus we suggest the real coding as:  

            NjCssjgchr ≤≤≤≤= 1,1)(  

                  ( )CNgCgsNgsgNggNgg ..1....1..2..211..11=               (3) 

The chr chromosome is a real line vector of dimension C×N. The genes (gsj)1≤j≤N are the components of 
the gs center: 

  Njsjgsg ≤≤= 1)( )....21( sNgsjgsgsg=               (4) 

To avoid that the initial solutions be far away from the optimal solution, each chromosome chr of the 
initial population should satisfy the condition: 

  ] ,max [min 11 MiijMiijsj aag ≤≤≤≤∈                     (5) 

In the EKM algorithm, we discard any chromosome with a gene that does not satisfy this constraint. 
This gene, if any, is replaced by an other one which complies with the constraint. 
 

4.2. The proposed fitness function   

Let chr be a chromosome of the population formed by the centers (gs)1≤s≤C, for computing the fitness 
function value associated with chr, we define the fitness function F which expresses the behavior to be 
optimized (J criterion):   

   
2

1 1
)( sgiR

M

i

C

s
chrF −∑

=
∑
=

=  (6) 

The chromosome chr is optimal if  F is minimal.  
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4.3. The proposed mutation operator    

The performances of an algorithm based on evolutionary strategies are evaluated according to the 
mutation operator used[11]. One of the mutation operator form proposed in the literature [7,12,13 ]is 
given by:  

chr* = chr + σ × N(0,1) (7) 

where chr* is the new chromosome obtained by a Gaussian perturbation of the old chromosome chr. 
N(0,1) is a  Gaussian disturbance of mean value 0 and standard deviation value 1, σ is the strategic 
parameter. σ   is high when the fitness value of chr is high. When the fitness value of chr is low, σ  
must take very low values in order to be not far away from the global optimum.  
  
We have been inspired from this approach to propose a new form of the mutation operator. The fact 
that we have proposed a new mutation operator is motivated by our interest to reach the global solution 
in a small computational time.   

  
Let chr be a chromosome of the population formed by the centers  (gs)1≤s≤C.  

Let
siCssisi gRgRsiCLR −=−∈ = ,1'min , i.e. the class consisting of the Ri observations that are 

closest to the center gs. Let g°s center of gravity CLs (figure 3).  

     
s

i

l

CLR

R

sg
si

∑
∈

=°   where  )( sCLcardsl =                     (8) 

 
Figure 3: Illustration example in a two dimensional space. 

  
The mutation operator which we propose in this work consists in generating, from the chr, the new 

chromosome chr* formed by the centers (g*s)1≤s≤C, as:    

      g*s = gs + fm × ( g°s - gs) × N(0,1)                (9)  

where fm is a constant multiplicative factor taken to be between 0.5 to 1. The new strategic parameter 
proposed   

σ’  = fm × ( g°s - gs ) 
is low when gs gets closer to g°s and is high when gs is far from g°s. The σ’  proposed  parameter has 
two advantages:  

- When chr is far from the global solution, chr is subjected 
to a strong Gaussian perturbation allowing chr to move more quickly in the research space and 
in the same time to avoid local solutions.  

- σ’   controls the Gaussian perturbation level. Indeed, as 
the chromosome chr gets closer to the global solution, the Gaussian perturbation level is reduced 
until becoming null at convergence.   
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From generating children chromosomes from parent chromosomes  we have adopted the technique of 
choice by ordering. We have also used the elitist technique [14].   

4.4. The proposed EKM algorithm  

Figure 4 shows the different steps of the proposed EKM algorithm.  

 Stage 1: 

1.1. Fix: 
- The size of the population maxpop. 

- The maximum number of generations maxgen. 

- The number of classes C. 
1.2. Generate randomly the population P: 

P = {chr1, .., chrk, ..., chrmaxpop} 
1.3. Verify for each chr of P the constraint: 

 gsj∈[min aij, max aij], 1≤i≤M 

1.4. Attribute for each chr of P, the observations Ri to the corresponding classes: 

si
ss
Cssisi gRgRifCLR −=−∈

≠
=

'
,1min  

1.5. Update the population P, for each chr of P do: 

s

is

l

CLR

Rg

sg
si

+

+

=

∑
∈

1
'  where )( sCLcardsl =  

1.6. Compute for each chr of P its fitness value F(chr). 

Stage 2: 

Repeat 

2.1. Order the chromosomes chr in P from the best to the poor ( in an 
increasing order of F). 
2.2. Choose the best chromosomes chr. 
2.3. Attribute for each chr of P, the observations Ri to the corresponding classes: 

si
ss
Cssisi gRgRifCLR −=−∈

≠
=

'
,1min  

2.4. Generate randomly the constant fm (fm ∈ [0.5, 1]). 
2.5. Mutation of all the chromosomes chr of P except the first one (elitist 
technique): 

g*s = gs + fm × ( g°s - gs) × N(0,1) 
2.6. Attribute for each chr of P except the first one, the observations Ri to the 
corresponding classes: 

si
ss
Cssisi gRgRifCLR −=−∈

≠
=

'
,1min  

2.7. Update the population P, for each chr of P except for the first one, do: 

s

is

l

CLR

Rg

sg
si

+

+

=

∑
∈

1
'    where )( sCLcardsl =  

 (The population P obtained after the updating is the population of the next 
generation ) 
2.8. Compute for each chr of P its fitness value F(chr). 
 
Until Nb_gen (generation number) ! maxgen 

Figure 4: The proposed EKM algorithm. 
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5.  Determination of the optimal number of classes 

5.1. Xie and Beni criterion   

Choosing the right number of classes C, In many partition problems, is a difficult task. Several criteria 
for choosing the optimal number of classes, based on different approaches, have been proposed in the 
literature[5,12,13,14,15]. We have retained in this paper the Xie and Beni criterion which is based on a 
measure of separability and compacity of the classes. The separability and compacity measures have 
been used to define criteria which have permitted to evaluate the classification performances [3]:     

- A compacity criterion is: 

           
2

1 1

1
)( sgiR

M

i

C

sM
CComp −∑

=
∑
=

=             (10) 

- And a separability criterion is:  

             
2

''min)( sgsgssCSep −≠=                             (11) 

 Xie and Beni [5] proposed to choose Copt number as that which minimizes the ratio: 

             
)(

)(
min arg

CSep

CComp
CoptC =                  (12) 

 

5.2 Optimization of Xie and Beni criterion by evolutionary strategies  

 
Let FXB be a function which expresses the Xie and Beni criterion: 

           
2

''min

2

1 1

1

) ,(

s
gsgss

sgiR
M

i

C

sM
chrCXBF

−≠

−∑
=
∑
=

=            (13) 

where chr is a chromosome formed by the centers (gs)1≤s≤C. 
 For a given value of C , FXB(C,chr) only depends on chr. The algorithm for computing FXB(C,chr) 
value with a fixed value of C, must obtain at convergence the global optimal partition (chr is a global 
optimum) for which FXB(C,chr) is minimal. Let fXB(C) = minchr FXB(C,chr) be this value. Xie and Beni 
criterion consists in choosing Copt such as  
fXB(Copt) = minC fXB(C). Figure 4 gives an illustration example which shows that if the computation of 
fXB(C) (with a fixed C) presents local solutions, the Xie and Beni criterion does not obtain the correct 
optimal number of classes Copt. 
 

 
Figure 4: Illustration example. 
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 Thus, to avoid local solutions when computing fXB(C) for a given value of C, we have designed an 
evolutionist algorithm called XB_ES. This algorithm performs the same steps as the EKM algorithm, 
except that the fitness function F is replaced by the function FXB. 
 The XB_ES algorithm runs for several values of C, C∈[Cmin, Cmax] (2≤Cmin and Cmax <<M). For each 
value of C, the algorithm obtains at convergence fXB(C). The optimal number of classes Copt 
corresponds to the value of C for which fXB(C) is minimal.  
 

6. Experimental results and evaluations   

6.1. Introduction 

We have considered four simulation tests in the observations space of dimension 2 (N=2). These tests 
are different from each other by the repartition type of the classes in the observations space. In each 
test, the classes are generated randomly by Gaussian distributions and each class contains 100 
observations.   

6.2. Test 1   

In this test, the number of classes chosen is C=3 and the overlapping degree between the classes is null. 
The classes are well separated between them. Table 1 gives the real centers of the classes and figure 5 
shows the repartition of the observations in the observations space.  

Table 1: Real centers of the classes. 
 

 Class  CL1 CL2 CL3 
Center Vector  6  3 8  5 4   5 

 

2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

a1

a
2

class1

class2

class3

 

Figure 5: Repartition of the observations in the space. 
 

The proposed evolutionist algorithm runs quickly. Figure 6 shows the evolution of the fitness value of 
the best chromosome of the current population as long as the generations progress. The optimal 
chromosome chropt obtained is:  

chropt= (5.9641  2.8913  7.9981  5.0404  4.0456   4.9975 )     (14) 
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Figure 6: Fitness evolution. 

We noticed that in very few generations, the EKM algorithm converges to the global optimum and 
determines the class centers. This is due to the parallel nature of the evolutionist algorithm and also to 
the nature of the proposed mutation operator which has rapidly guided the algorithm, by means of an 
adapted Gaussian perturbation, to the global solution. The local solutions have well been avoided. The 
centers obtained are slightly shifted from the real centers.  
The classification results obtained by the proposed evolutionist algorithm are summarized in figure 7 
and table 2.  
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center

 
Figure 7: Optimal classes and centers obtained by the EKM algorithm. 

 
Table 2: Confusion matrix. 

 
 Estimated 

CL1  
Estimated 

CL2 

Estimated 
CL3 

CL1 100 0 0 
CL2 0 100 0 
CL3 0 0 100 

These results show that all the observations are correctly attributed to their corresponding classes, the 
error rate obtained is null.  

Thus, we notice that the proposed EKM algorithm has improved the performances of the KM 
algorithm. The initialization problem is removed, the result obtained is the same for many different 
initializations. The proposed mutation operator has permitted to the algorithm to avoid local optimums 

and to converge rapidly to the global solution.    
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6.3. Test 2  

In this test, we have considered three other classes, but the overlapping degree in this case is high. The 
classes are very close to each other and have the same centers as the classes of test 1. Figure 8 shows 
the repartition of the observations in the observations space. We notice that it is difficult to find the 
optimal partition in this case.  
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class2

class3

 
Figure 8: Repartition of the observations in the space. 

 
    Figure 9 shows the evolution of the fitness value of the best chromosome of the current population 
with respect to the progressing generations. It shows that the proposed algorithm converges rapidly to 
the global solution. The rapidity of the algorithm is not sensitive to the overlapping degree. The 
optimal chromosome chropt is obtained:  

chropt= (6.0230   3.0166   8.1836   5.0796  4.0740   5.0656 )    (15)  
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Figure 9: Fitness evolution. 

  
Figure 10 and table 3 summarize the classification results obtained by the proposed algorithm. 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol. 1Vol. 1Vol. 1Vol. 19999, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

 
 

52 
 

2 4 6 8 10 12
1

2

3

4

5

6

7

a1

a
2

class1

class2

class3

center

 
Figure 10: Optimal classes and centers obtained by the EKM algorithm. 

 
Table 3: Confusion matrix. 

  
 Estimated 

CL1  
Estimated 

CL2 

Estimated 
CL3 

CL1 91 1 8 

CL2 4 94  2 

CL3 2 1 97 

   
The number of misclassified observations in this case is 18. The corresponding error rate is:  

%6
300

18
==τ            (16) 

The error rate has increased with the overlapping degree. By analyzing the repartition of the classes, 
we noticed that the misclassified observations are situated:  

- Either far away from the space of their corresponding classes, for instance the class CL3 
contains 8 observations of class CL1 ( figure 8).  

- Either in the boundaries of separation between the classes, for instance the boundary which 
separates the two classes CL2 and CL3 ( figure 8).  

It is then normal that these observations are misclassified, this explains the high error rate value 
obtained.   

6.4. Test 3  

In this test, we evaluate the performance of the algorithm EKM for a high number of classes, we chose 
C = 6. The degree of overlap between classes is low. The real centers of 6 classes generated are shown 
in Table 4, and Figure 11 shows the distribution of observations in the observations space. 
 

Table 4: Real centers of the classes. 
 

Class CL1 CL2 CL3 CL4 CL5 CL6 
Center Vector 6   3 8   5 8   7 4   7 4  5 6   6 

 
The proposed evolutionary algorithm runs quickly. Figure 12 shows the evolution of the fitness value 
of best chromosome of the current population with respect to the progressing generation generations. 
The optimal chromosome  chropt is obtained: 

chropt   =(5.9771     2.9653    8.0050    4.9850   7.9742   7.0039            4.0437    6.9720    3.9240    5.0007    6.0951     6.0457)  
    (17) 
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Figure 11: Repartition of the observations in the space. 
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Figure 12: Fitness evolution. 
 

The classification results obtained by the EKM algorithm are summarized in figure 13 and table 5.  
 

Table 5: Confusion matrix. 
 
 
        
 
 
 
 
 
 
 

 Estimated 
CL1 

Estimated 
CL2 

Estimated 
CL3 

Estimated 
CL4 

Estimated 
CL5 

Estimated 
CL6 

CL1 100 0 0 0 0 0 
CL2 0 93 5 0 0 2 
CL3 0 1 96 0 0 3 
CL4 0 0 0 97 2 1 
CL5 0 0 0 5 92 3 
CL6 0 1 3 1 3 92 
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Figure 13: Optimal classes and centers obtained by the EKM algorithm.  
 
 

The table 5 shows the number of misclassified observations (30 observations, the corresponding error 
rate is: 

        %5
600

30
==τ     (18) 

The error rate obtained by the algorithm EKM remains low, which confirms the good performance. 
 

6.5. Test 4  

For this test, the same class centers are taken as for test 3 hawever, the overlapping degree between the 
classes is high.  
Figure 14 shows the repartition of the classes in the observations space, it shows that it is difficult to 
find the best partition for such a case. The observations of each class are indeed not concentrated 
around their class center. It is then possible to find observations of a class CLs which are more close to 
the center of an other class CLs’ than they are to their own center (figure 14). These observations are 
generally misclassified.   
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Figure 14:  Repartition of the observations in the space.  

 
  The proposed EKM algorithm converges in a small number of generations (not more than 6) towards 
the global optimum (figure 15). The optimal chromosome chropt is obtained:  
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chropt = (6.0089     2.9531     8.0318     4.9672     7.9680     7.0387    4.0193   6.9713    3.8823    4.9214    6.0691   6.0332)          
(19) 
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Figure 15: Fitness evolution.  

 
    The classification results obtained by the EKM algorithm are summarized in figure 16 and table 6.  

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

a1

a
2

class1

class2

class3

class4

class5

class6

center

 
Figure 16: Optimal classes and centers obtained by the EKM algorithm. 

 
Table 6: Confusion matrix. 

 
 Estimated 

CL1 

Estimated 
CL2 

Estimated 
CL3 

Estimated 
CL4 

Estimated 
CL5 

Estimated 
CL6 

CL1 97 0 0 0 2 1 
CL2 1 88 8 0 0 3 
CL3 0 3 91 0 0 6 
CL4 0 0 0 95 2 3 
CL5 1 0 0 8 87 4 
CL6 0 2 8 1 4 85 

  The number of misclassified observations is 57, the corresponding error rate is:  

              %5.9
600

57
==τ    (20) 

 Whilst the number of classes increases with a high overlapping degree between the classes, the error 
rate value  
obtained remains low. This confirms the good performances of the EKM algorithm presented even 
when the number of classes is high.  
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6.6. Estimation of the optimal number of classes 

We here evaluate the performances of Xie and Beni criterion optimized by evolutionary strategies. For 
this, we have retained the four experimental tests presented above. In each test, the XB_ES algorithm 
was run for several values of C  in [2,6] for tests 1 and 2 , C in [2,10] for tests 3 and 4. Figures 17 to 20 
show the evolution of the fXB function with respect to the number of classes C. 
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Figure 17: Evolution of  fXB with respect to C for test 1, Copt =3. 
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Figure 18: Evolution of  fXB with respect to C for test 2, Copt =3. 
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Figure 19 : Evolution of  fXB with respect to C for test 3, Copt =6. 
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Figure 20 : Evolution of  fXB with respect to C for test 4, Copt =6. 

 
 The results obtained, for each test, show that the estimated optimal number of classes Copt coincide 
with the real number Creal (i.e., Copt = Creal = 3 for tests 1 and 2,  and Copt = Creal = 6 for tests 3 and 4  ). 
Thus, the optimization of Xie and Beni criterion by evolutionary strategies has permitted to determine 
successfully the optimal number of classes. This confirms the good performances of the proposed 
approach. 
 
 

7. Conclusion  

The unsupervised classification by the KM algorithm requires the a priori determination of the number 
of classes and suffers from the initialization phase and the local optimums. 

We have proposed a new approach to get around these difficulties. Our approach is based on 
evolutionary strategies and on the Xie and Beni criterion. We have proposed a new evolutionist KM 
algorithm. We presented a real coding and defined an adequate fitness function suitable for the 
behavior to be optimized. We proposed a new mutation operator that have permitted to the algorithm to 
avoid local solutions and to converge rapidly to the global solution. We also optimized the Xie and 
Beni criterion by evolutionary strategies in order to estimate correctly the optimal number of classes. 

The proposed approach was tested on several simulation examples. The experimental results obtained 
show the rapidity of convergence and the good performances of this classification method. The optimal 
number of the classes estimated by the Xie and Beni criterion coincide with the real one. The two 
problems of initialization and local optimums are discarded in the EKM algorithm.  
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