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Abstract 
 

Floating-point division is generally regarded as a low frequency, high latency 

operation in typical floating-point applications.So due to this not much development had 

taken place in this field. But nowadays floating point divider has become indispensable 

and increasingly important in many modern applications. Most of the previous 
implementation required much larger area and latencies. In this paper an area optimized 

design and implementation of a sequential and pipelined double precision floating point 

divider is presented. This design is then mapped onto an FPGA chip without utilizing any 
of its embedded features 
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1.  Introduction 

Modern applications comprise several floating point operations like addition, 

multiplication, division, and square root etc. In recent FPUs, emphasis has been placed on 

designing ever-faster adders and multipliers, with division receiving less attention. The 

typical range for addition latency is two to four machine cycles and the range for 

multiplication is two to eight machine cycles. In contrast, the latency for double precision 

division ranges from six to 61 cycles and square root is often far larger. Most emphasis 

has been placed on improving the performance of addition and multiplication. As the 

performance gap widened between these operations and division, floating-point 

algorithms and applications have been slowly rewritten to account for this gap by 

mitigating the use of division. Thus current applications and benchmarks are usually 

written assuming that division is an inherently slow operation and should be used 

sparingly. Thus division was considered as a ‘black art’ among system designers. 

But with the advent of new technologies a new algorithm for the efficient 

implementation of division also became necessary. As such many algorithms were 

developed for divider which includes subtractive method, functional iterations which uses 

multipliers and algorithms for faster computation of division like high radix algorithm. 

But most of these algorithms namely functional iteration and high radix algorithm 

required multipliers and thus consumed large area and power. But large area for division 

alone is not desirable. So digit recurrence algorithm which uses subtractive method for 

computation could be used as it consumes much less area when compared with other 

algorithms. 

So we have designed a sequential double precision floating point divider to achieve a 

low area with moderate latency. The throughput can be increased by pipelining the 
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designed unit. This design unit is mapped onto FPGA in order to achieve higher data rates. 

This design is implemented in Cyclone II FPGA and it is seen that our design requires 

only less area and works with moderate latency.  

 The double precision floating point divider presented here is based on IEEE 754 

binary floating point standard. Having a standard ensures that all compliant machines will 

produce the same outputs for the same program. The standard is very complex and 

difficult to implement efficiently. 

 
2.  Previous work 

Formerly division was less frequently used and so no much development had taken place 

in its field. But with the advent of new technology floating point computation also 

became important and was widely used. Thus implementation efficiency of addition and 

multiplication were much developed. But the division stood back [7]. So the performance 

of the system that used floating point divider was greatly affected [8]. 

So a new algorithm for efficient implementation of division also became necessary. As 

such many algorithms were put forth [9]. Functional iteration used multipliers for 

computation and hence they required larger area but they required only less latency. On 

the other hand digit recurrence required small area [11] but latency had to be 

compromised. But latency can be reduced by increasing the radix. 

The divider can be implemented in many ways in order to achieve low area, low 

latency and high throughput.[6] [10] 

The throughput can be increased by partial unrolling of the dividing unit and inserting 

pipeline registers in between the dividing unit [3], [4].Then a library of floating point can 

be developed for FPGAs according to compliance with IEEE [5]. 

 

3. Double precision floating point divider based on IEEE 754     

binary floating point standard 

 

 

Fig.1 The Double Precision Format 

 

Floating point divider relies on IEEE 754 binary floating point standard. The standard 

specifies different types of precision. We represent a binary floating-point number with 

three fields: a sign bit s, an exponent field e and a fraction field f. According to this 

standard a double precision floating point number(N) is 64 bit width consisting of a sign 

bit(S), 11 bit exponent(E) and 52 bit mantissa(M). It can be represented as   N= (-1)s.2e.S; 

Where S is the significand (fractional) part and can be represented as 1.f, where f is the 

fractional part and 1 is the hidden bit. e = E – E bias; where E bias = 1023; 

For double precision numbers, the range of the unbiased exponent e is [-1022, 1023], 

which translates to a range of     [1,2046] for the biased exponent E. The values E=0 and 

E=2047 are reserved for special quantities.    The number zero is represented with E=0 

and f=0.The hidden significand bit is also 0 and not 1. Zero has a positive or negative sign 

like normal numbers. When E=0 and f ≠  0 then the number has e=-1022 and a 
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significand S=0.f. The hidden bit is 0 and not 1 and the sign is determined as for normal 

numbers. Such numbers are referred to as “denormalised”. 

An exponent E=2047 and a fraction f=0 represent infinity. The sign of infinity is 

determined as for normal numbers.Finally, an exponent E=2047 and a fraction f≠ zero 

represent the symbolic unsigned entity NaN (Not a Number), which is produced by 

operations like 0/0 and 0/ ∞ .The standard does not specify any NaN values, allowing the 

implementation of multiple NaN. Here only one NaN is provided with E=2047 and f 

=0.00001.The IEEE standard specifies four rounding modes. Here we are using only 

rounding to the nearest mode. 
 

 

4.  Double precision floating point divider  architecture  
 

The divider receives two 64 bit floating point numbers. First these numbers are unpacked 
by separating the numbers into sign bit, exponent bits and mantissa bits as shown in fig 1.  

The sign logic is a simple XOR. The exponents of the two numbers are subtracted and 

then added with a bias number i.e., 1023. Mantissa division block performs division using 
digit recurrence algorithm. It takes more than 55 clock cycles. After this the output of 

mantissa division is normalised i.e., if the MSB is of the result obtained is not 1, then it is 

left shifted to make the MSB 1. If changes are made by shifting then corresponding 

changes has to be made in exponent also. 

After mantissa division the output is 55 bit long. But we require only 53 bit mantissa. 

So after normalization the 55 bit output is passed on to the rounding control. Here 

rounding decision is made based on the last 2 bits of the LSB. They are the guard bit and 

the sticky bit respectively. From these 2 bits and other lower bits an additional bit called 

round bit is calculated. This bit decides whether rounding has to be performed or not. If 
the round bit is 1, then a 1 has to be added to the LSB of the output and then scaled to 53 

bits. These functions are performed in the rounding block according to the decision taken 

in the rounding control block. 

If a 1 is added to the LSB of the mantissa then corresponding changes has to be made 

in the exponent part also. This is carried out in the exponent adjustment block. 

Finally the output from the Sign block, Exponent adjustment block and the Rounding 

block are concatenated in the packing block to produce the final quotient. The whole 

circuit takes about 62 clock cycles. 
 

 

5. Pipelining of  Double precision floating point divider  
 

For increasing the throughput of the circuit the division step is unrolled as shown in 

Fig 3 to produce a combinational circuit. Then pipeline latches can be inserted in between 

as depicted in fig. 4 in order to increase the throughput. 

But pipelining in this way causes much area overhead. So in order to minimise area 

partial unrolling of the circuit could be done. Partial unrolling of the can be done by 

unrolling the circuit to 2,4,8,16 or 28 stages and inserting the pipeline registers after each 

stage. By doing so, the throughput can be increased without much area overhead.  
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Fig.2 The divider block diagram 

 

The area of a pipeline design can be expressed as  

 

                                                                               (1) 

where c is the combinational area of a single iteration, r is the number of bit registers 

required for a single pipeline stages, d is the execution delay of a single iteration and n is 

the number of iterations in the sequential design. 
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Fig.3 Unrolling steps of the division hardware 

 

 

                                                     

Fig.4 Inserting pipeline latches in the divider circuit 

 

6.  Implementation results  
 

The divider circuit based on digit recurrence algorithm was simulated in Modelsim 6.4c 

and synthesized in Altera Quartus II version 9 which was mapped on to Cyclone II FPGA. 
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Table 1 Area utilized by all the modules in double precision floating point 
divider 

 

Modules 

 

Total registers 

 

Total combinational 

 functions 

 

Total logic elements 

  

No. Of 

 elements 

 

% 

 Area 

 

No. Of 

elements 

 

% 

 Area 

 

No. Of 

 elements 

 

%  

Area 

 
Unpacking 

 
128/18752 

 
<1 

 
128/18752 

 
<1 

 
128/18752 

 
<1 

 
Sign 

 
1/18752 

 
<1 

 
1/18752 

 
<1 

 
1/18752 

 
<1 

 

Exponent 

 

11/18752 

 

<1 

 

22/18752 

 

<1 

 

22/18752 

 

<1 

 

Division 

 

55/18752 

 

<1 

 

8423/18752 

 

45 

 

8423/18752 

 

45 

 

Normalization 
with exponent 

adjustment 

 

131/18752 

 

<1 

 

102/18752 

 

<1 

 

156/18752 

 

<1 

 

Rounding  with 

exponent 
adjustment 

 

64/18752 

 

<1 

 

146/18752 

 

<1 

 

146/18752 

 

<1 

 

Packing 

 

64/18752 

 

<1 

 

64/18752 

 

<1 

 

64/18752 

 

<1 

 

Table 2 Power utilized by all the modules in double precision floating point 

divider 

 

 

 

Module 
Static power 

dissipation (mW ) 

Dynamic power 

dissipation (mW) 

I/O thermal power 

dissipation(mW) 

Unpacking 47.39 6.79 36.2 

Sign 47.35 .17 20.73 

Exponent 47.36 2.53 24.26 

Division 47.51 11.03 40.74 

Normalization with 

exponent adjustment 
47.39 5.42 35.86 

Rounding  with 

exponent adjustment 
47.39 4.63 35.79 

Packing 47.42 9.4 36.3 
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Table 3  Area utilized by a double precision floating point divider using digit 
recurrence algorithm. 
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% Area 
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2 
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49 

 

Total logic elements 

 

49 

 
Table 4   Power  dissipated by a double precision floating point divider 

using digit recurrence algorithm 

 

 

 

 

 

 

 

 

 

 

Table 5   Comparison between digit recurrence algorithm and functional 

iteration algorithm 
 

 

 

 

 

 

 

 

 

 

 

From the table 5 it is evident that the digit recurrence algorithm requires only small area 

when compared with functional iteration algorithm. So pipelining of these units does not 

produce much area overhead than other division algorithms.  
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49 
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0 98 
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7.  Future enhancement 
 

The latency of the divider can be reduced by using a secondary clock for mantissa 

division alone. The frequency of the secondary clock is twice larger than the primary 

clock. The primary clock is applied to all other parts of the divider unit. This is done 

because mantissa division is the slowest part and it requires more than 55 clock cycles for 

mantissa computation. 

The latency can also be reduced by using a cache memory which can be used to store 

the quotient values of the data with high probability of occurrence. By doing so the 

latency can be reduced up to 6 clock cycles. 

An asynchronous double precision floating point divider can be designed for 

reusability of the divider unit in various systems operating at different frequency.  Also 

power consumption can be reduced to a great extend as the global clock is removed and 
also clock skew problem also can be reduced by designing in this manner. 

 

8. Conclusion  

This paper presents the iterative and pipelined designs of double precision floating point 

divider unit. The design presented here can produce performances that are comparable to, 

and in some case higher than, non-iterative designs based on number representations of 

higher radices. The iterative design of the divider requires less area. Since the pipelining 

of our iterative designs is intended to accelerate compute-intensive applications on FPGA 

chips, full unrolling of these iterative designs is highly desirable since it can produce 

maximum performance. But it cause significant area overhead. So partial unrolling of the 

divider design is done without affecting the performance of the divider. 
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