
International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VoVoVoVol. 1l. 1l. 1l. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

41

Design and Implementation of an Optimized Double Precision

Floating Point Divider on FPGA

Shamna.K
1
 and S.R Ramesh

2

1
Student , M-Tech VLSI Design ,

2
Assistant. Professor

Dept. of Electronics and Communication Engineering

Amrita Vishwa Vidyapeetham, Coimbatore, India
1
shamnakoleri@yahoo.co.in ,

2
sr_ramesh@cb.amrita.edu

Abstract

Floating-point division is generally regarded as a low frequency, high latency

operation in typical floating-point applications.So due to this not much development had

taken place in this field. But nowadays floating point divider has become indispensable

and increasingly important in many modern applications. Most of the previous
implementation required much larger area and latencies. In this paper an area optimized

design and implementation of a sequential and pipelined double precision floating point

divider is presented. This design is then mapped onto an FPGA chip without utilizing any
of its embedded features

 Keywords: Double precision, Floating point unit, divider, FPGA.

1. Introduction

Modern applications comprise several floating point operations like addition,

multiplication, division, and square root etc. In recent FPUs, emphasis has been placed on

designing ever-faster adders and multipliers, with division receiving less attention. The

typical range for addition latency is two to four machine cycles and the range for

multiplication is two to eight machine cycles. In contrast, the latency for double precision

division ranges from six to 61 cycles and square root is often far larger. Most emphasis

has been placed on improving the performance of addition and multiplication. As the

performance gap widened between these operations and division, floating-point

algorithms and applications have been slowly rewritten to account for this gap by

mitigating the use of division. Thus current applications and benchmarks are usually

written assuming that division is an inherently slow operation and should be used

sparingly. Thus division was considered as a ‘black art’ among system designers.

But with the advent of new technologies a new algorithm for the efficient

implementation of division also became necessary. As such many algorithms were

developed for divider which includes subtractive method, functional iterations which uses

multipliers and algorithms for faster computation of division like high radix algorithm.

But most of these algorithms namely functional iteration and high radix algorithm

required multipliers and thus consumed large area and power. But large area for division

alone is not desirable. So digit recurrence algorithm which uses subtractive method for

computation could be used as it consumes much less area when compared with other

algorithms.

So we have designed a sequential double precision floating point divider to achieve a

low area with moderate latency. The throughput can be increased by pipelining the

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

Vol. 1Vol. 1Vol. 1Vol. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

42

designed unit. This design unit is mapped onto FPGA in order to achieve higher data rates.

This design is implemented in Cyclone II FPGA and it is seen that our design requires

only less area and works with moderate latency.

 The double precision floating point divider presented here is based on IEEE 754

binary floating point standard. Having a standard ensures that all compliant machines will

produce the same outputs for the same program. The standard is very complex and

difficult to implement efficiently.

2. Previous work

Formerly division was less frequently used and so no much development had taken place

in its field. But with the advent of new technology floating point computation also

became important and was widely used. Thus implementation efficiency of addition and

multiplication were much developed. But the division stood back [7]. So the performance

of the system that used floating point divider was greatly affected [8].

So a new algorithm for efficient implementation of division also became necessary. As

such many algorithms were put forth [9]. Functional iteration used multipliers for

computation and hence they required larger area but they required only less latency. On

the other hand digit recurrence required small area [11] but latency had to be

compromised. But latency can be reduced by increasing the radix.

The divider can be implemented in many ways in order to achieve low area, low

latency and high throughput.[6] [10]

The throughput can be increased by partial unrolling of the dividing unit and inserting

pipeline registers in between the dividing unit [3], [4].Then a library of floating point can

be developed for FPGAs according to compliance with IEEE [5].

3. Double precision floating point divider based on IEEE 754

binary floating point standard

Fig.1 The Double Precision Format

Floating point divider relies on IEEE 754 binary floating point standard. The standard

specifies different types of precision. We represent a binary floating-point number with

three fields: a sign bit s, an exponent field e and a fraction field f. According to this

standard a double precision floating point number(N) is 64 bit width consisting of a sign

bit(S), 11 bit exponent(E) and 52 bit mantissa(M). It can be represented as N= (-1)s.2e.S;

Where S is the significand (fractional) part and can be represented as 1.f, where f is the

fractional part and 1 is the hidden bit. e = E – E bias; where E bias = 1023;

For double precision numbers, the range of the unbiased exponent e is [-1022, 1023],

which translates to a range of [1,2046] for the biased exponent E. The values E=0 and

E=2047 are reserved for special quantities. The number zero is represented with E=0

and f=0.The hidden significand bit is also 0 and not 1. Zero has a positive or negative sign

like normal numbers. When E=0 and f ≠ 0 then the number has e=-1022 and a

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VoVoVoVol. 1l. 1l. 1l. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

43

significand S=0.f. The hidden bit is 0 and not 1 and the sign is determined as for normal

numbers. Such numbers are referred to as “denormalised”.

An exponent E=2047 and a fraction f=0 represent infinity. The sign of infinity is

determined as for normal numbers.Finally, an exponent E=2047 and a fraction f≠ zero

represent the symbolic unsigned entity NaN (Not a Number), which is produced by

operations like 0/0 and 0/ ∞ .The standard does not specify any NaN values, allowing the

implementation of multiple NaN. Here only one NaN is provided with E=2047 and f

=0.00001.The IEEE standard specifies four rounding modes. Here we are using only

rounding to the nearest mode.

4. Double precision floating point divider architecture

The divider receives two 64 bit floating point numbers. First these numbers are unpacked
by separating the numbers into sign bit, exponent bits and mantissa bits as shown in fig 1.

The sign logic is a simple XOR. The exponents of the two numbers are subtracted and

then added with a bias number i.e., 1023. Mantissa division block performs division using
digit recurrence algorithm. It takes more than 55 clock cycles. After this the output of

mantissa division is normalised i.e., if the MSB is of the result obtained is not 1, then it is

left shifted to make the MSB 1. If changes are made by shifting then corresponding

changes has to be made in exponent also.

After mantissa division the output is 55 bit long. But we require only 53 bit mantissa.

So after normalization the 55 bit output is passed on to the rounding control. Here

rounding decision is made based on the last 2 bits of the LSB. They are the guard bit and

the sticky bit respectively. From these 2 bits and other lower bits an additional bit called

round bit is calculated. This bit decides whether rounding has to be performed or not. If
the round bit is 1, then a 1 has to be added to the LSB of the output and then scaled to 53

bits. These functions are performed in the rounding block according to the decision taken

in the rounding control block.

If a 1 is added to the LSB of the mantissa then corresponding changes has to be made

in the exponent part also. This is carried out in the exponent adjustment block.

Finally the output from the Sign block, Exponent adjustment block and the Rounding

block are concatenated in the packing block to produce the final quotient. The whole

circuit takes about 62 clock cycles.

5. Pipelining of Double precision floating point divider

For increasing the throughput of the circuit the division step is unrolled as shown in

Fig 3 to produce a combinational circuit. Then pipeline latches can be inserted in between

as depicted in fig. 4 in order to increase the throughput.

But pipelining in this way causes much area overhead. So in order to minimise area

partial unrolling of the circuit could be done. Partial unrolling of the can be done by

unrolling the circuit to 2,4,8,16 or 28 stages and inserting the pipeline registers after each

stage. By doing so, the throughput can be increased without much area overhead.

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

Vol. 1Vol. 1Vol. 1Vol. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

44

Fig.2 The divider block diagram

The area of a pipeline design can be expressed as

 (1)

where c is the combinational area of a single iteration, r is the number of bit registers

required for a single pipeline stages, d is the execution delay of a single iteration and n is

the number of iterations in the sequential design.

UNPACKING

PACKING

Sign Logic

Exponent

Subtraction

Normalization

Mantissa

Division

Exponent

Adjustment

Exponent

Adjustment

Bias

Addition

Rounding

Rounding

Control

11
11

11

11

11

11

53 53

55

55

53

1
1

1

1

1

64

64 64

1

Partial

Remainder

Register

Partial

Quotient

Register

S [0]=z

S [j+1]

q [j]

 q[j+1]

S [j]

Dividend

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VoVoVoVol. 1l. 1l. 1l. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

45

Fig.3 Unrolling steps of the division hardware

Fig.4 Inserting pipeline latches in the divider circuit

6. Implementation results

The divider circuit based on digit recurrence algorithm was simulated in Modelsim 6.4c

and synthesized in Altera Quartus II version 9 which was mapped on to Cyclone II FPGA.

S [0] q [0]

.
.
.

.

.

.

.

Pipeline registers

Pipeline registers

Division step 1

Division step 2

Division step n

Dividend S [0] q [0]

Dividend

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

Vol. 1Vol. 1Vol. 1Vol. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

46

Table 1 Area utilized by all the modules in double precision floating point
divider

Modules

Total registers

Total combinational

 functions

Total logic elements

No. Of

 elements

%

 Area

No. Of

elements

%

 Area

No. Of

 elements

%

Area

Unpacking

128/18752

<1

128/18752

<1

128/18752

<1

Sign

1/18752

<1

1/18752

<1

1/18752

<1

Exponent

11/18752

<1

22/18752

<1

22/18752

<1

Division

55/18752

<1

8423/18752

45

8423/18752

45

Normalization
with exponent

adjustment

131/18752

<1

102/18752

<1

156/18752

<1

Rounding with

exponent
adjustment

64/18752

<1

146/18752

<1

146/18752

<1

Packing

64/18752

<1

64/18752

<1

64/18752

<1

Table 2 Power utilized by all the modules in double precision floating point

divider

Module
Static power

dissipation (mW)

Dynamic power

dissipation (mW)

I/O thermal power

dissipation(mW)

Unpacking 47.39 6.79 36.2

Sign 47.35 .17 20.73

Exponent 47.36 2.53 24.26

Division 47.51 11.03 40.74

Normalization with

exponent adjustment
47.39 5.42 35.86

Rounding with

exponent adjustment
47.39 4.63 35.79

Packing 47.42 9.4 36.3

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

VoVoVoVol. 1l. 1l. 1l. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

47

Table 3 Area utilized by a double precision floating point divider using digit
recurrence algorithm.

Component

% Area

Total logic registers

2

Total combinational functions

49

Total logic elements

49

Table 4 Power dissipated by a double precision floating point divider

using digit recurrence algorithm

Table 5 Comparison between digit recurrence algorithm and functional

iteration algorithm

From the table 5 it is evident that the digit recurrence algorithm requires only small area

when compared with functional iteration algorithm. So pipelining of these units does not

produce much area overhead than other division algorithms.

Static power dissipation (mW)

47.41

Dynamic power dissipation (mW)

82.91

I/O thermal power dissipation (mW)

52.16

Clock frequency

265MHz

Digit Recurrence

Algorithm

Functional Iteration

Algorithm

Components % Area % Area

Total logic elements

49

54

Total combinational

functions
49

54

Embedded Multiplier

0 98

International JournalInternational JournalInternational JournalInternational Journal of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology

Vol. 1Vol. 1Vol. 1Vol. 18888, , , , MayMayMayMay, 2010, 2010, 2010, 2010

48

7. Future enhancement

The latency of the divider can be reduced by using a secondary clock for mantissa

division alone. The frequency of the secondary clock is twice larger than the primary

clock. The primary clock is applied to all other parts of the divider unit. This is done

because mantissa division is the slowest part and it requires more than 55 clock cycles for

mantissa computation.

The latency can also be reduced by using a cache memory which can be used to store

the quotient values of the data with high probability of occurrence. By doing so the

latency can be reduced up to 6 clock cycles.

An asynchronous double precision floating point divider can be designed for

reusability of the divider unit in various systems operating at different frequency. Also

power consumption can be reduced to a great extend as the global clock is removed and
also clock skew problem also can be reduced by designing in this manner.

8. Conclusion

This paper presents the iterative and pipelined designs of double precision floating point

divider unit. The design presented here can produce performances that are comparable to,

and in some case higher than, non-iterative designs based on number representations of

higher radices. The iterative design of the divider requires less area. Since the pipelining

of our iterative designs is intended to accelerate compute-intensive applications on FPGA

chips, full unrolling of these iterative designs is highly desirable since it can produce

maximum performance. But it cause significant area overhead. So partial unrolling of the

divider design is done without affecting the performance of the divider.

9. References

[1] K. Scott Hemmert and Keith D. Underwood “Floating Point Divider Design for FPGAs”, IEEE

Transaction on very large scale integration systems,vol. 15, No. 1, pp. 115-118,Jan 2007.

[2] Mohamed anane, Hamid Bessalah ,Mohamed Issad, Nadjia Anane and Hassen Salhi “Higher radix and

redundancy factor for floating point SRT Division”, IEEE Transaction on very large scale integration systems,

vol. 16, no. 16, pp. 122-128,June 2008.

[3] Anuja Jayraj Thakkar and Abdel Ejnioui “ Pipelining of Double Precision Floating Point Divider and

Square Root Operations ,” Proceedings of the 44th annual southeast regional conference, March 2006.
[4] Anuja Jayraj Thakkar and Abdel Ejnioui “ Design and Implementation of Double Precision Floating

Point Divider And Square Root Operations On FPGAs ,”IEEE Conference on field programmable

technology,2006

[5] Govindu G ,Scrofano.R and Prasannna V.K “ A Library of Parameterizable Floating Point Cores for

FPGAs and their Application to Scientific Computing,” International Conference on engineering of

reconfigurable systems and algorithms,2005.
[6] X .Wang and B.E Nelson, "Tradeoffs of designing floating point division and square root on virtex

fpgas”, International Conference on engineering of reconfigurable systems and algorithms,2004.

[7] S. Paschalakis and P. Lee ,”Double precision Floating point arithmetic on fpgas "IEEE Conference on

field programmable technology,2003.

[8] S.F. Oberman and M.J. Flynn, “Design Issues in Division and Other Floating-Point Operations,” IEEE

Trans. Computers, vol. 46,no. 2, pp. 154-161, Feb. 1997.
[9] S.F. Oberman and M.J. Flynn, “Division Algorithms and Implementations,” IEEE Trans. Computers,

vol. 46, no. 8, pp. 833-854, Aug. 1997.

[10] Peter Soderquist, Miriam Leeser, "Division and Square Root: Choosing the Right Implementation,"

IEEE Micro, vol. 17, no. 4, pp. 56-66, July/Aug. 1997.

[11] Synthesis of arithmetic circuits-FPGA, ASIC, and embedded systems by Jean-Pierre Deschamps Gery
Jean Antoine Bioul and Gustavo D. Sutter, A John Wiley & Sons, inc., publication

