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Abstract 

The problem of estimating a signal that is corrupted by additive noise has been of interest 
to many researchers for practical as well as theoretical reasons. Many of the traditional 
denoising methods have been using methods such as the Wiener filtering. Recently, nonlinear 
methods, especially those based on wavelets have become increasingly popular, due to a 
number of advantages over the linear methods. It has been shown that wavelet and 
multiwavelet thresholding guarantees better rate of convergence, despite its simplicity. This 
paper demonstrates the work of combining Parametric multiwavelet and Sureshrink to 
remove noise from the signal. Experimental results shows that the proposed work is 4% 
efficient in terms of SNR values and image quality when compared to other wavelet families 
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1. Introduction 

 Signal available in the real world are always corrupted with noise. Noise is an 
unavoidable signal during transmission. Many researches concentrate on the removal of 
noise from the signal. The process of removing noise from the signal is called as 
denoising. Under ideal condition, this noise may decrease to such negligible levels 
while the signal will increase to a significant level. Removal of noise actually started in 
the time domain. The extraction of pure signal from corrupted signal is not appreciable 
in time domain, whereas if the same done in frequency domain the performance was 
better. Therefore the researchers use the frequency domain rather than time domain. For 
conversion if the Fourier Transform is used the perfect removal is not possible. For the 
last 15 years wavelet shrinkage method is used which do the job more efficiently than 
most other methods in denoising. Three major steps are followed for the process of 
denoising. They are 

1. A linear forward wavelet transform 

2. A non-linear shrinkage denoising 

3. A linear inverse wavelet transform 

In the recent years there has been a fair amount of research on wavelet thresholding 
and threshold selection for signal de-noising [1-4] because wavelet provides an 
appropriate basis for separating noisy signal from the image signal. The motivation is 
that as the wavelet transform is good at energy compaction, the small coefficients are 
more likely due to noise and large coefficient due to important signal features [5]. 



International Journal of Advanced Science and Technology 

Vol. 16, March, 2010 

 

 

2 

Donoho and Johnstone proved several important theoretical results on wavelet 
thresholding, or wavelet shrinkage [6-7]. They showed that wavelet shrinkage has many 
excellent properties, such as optimality in minima sense, and a better rate of 
convergence [6-7]. DeVore and Lucier have also arrived at the wavelet thresholding 
concept, starting from their independent work on variation problems [8].  

Wavelet shrinkage depends heavily on the choice of a thresholding parameter and the 
choice of this threshold determines, to a great extent the efficiency of denoising. The 
denoising process is based on the fact that the wavelet transform compresses most of 
the L2 energy of the signal in a restricted number of large coefficients. The procedure 
can be summarized in three steps 

 Y=W(X) 

      Z=T(Y,λ)                        (1) 

     Y1=W -1(Z) 

where x is the affected signal, W (.) and W-1 is the forward and inverse wavelet 
transform operators. T(Y, λ) denotes the denoising operator with soft or hard threshold 
[l]. Of the various methods based on wavelet thresholding, TopShrink [9], SureShrink 
[10], BayesShrink [11] and its variants are the most popular. VisuShrink uses one of the 
well known thresholding rules: the universal threshold. In addition, subband adaptive 
systems have superior performance, such as SureShrink, which is a data driven system. 
Recently, SureShrink [11], which is also a data driven subband adaptive technique, is 
proposed and outperforms TopShrink and BayesShrink. In the proposed method 
SureShrink is used along with anisotropic diffusion to get a better performance than 
stand alone anisotropic diffusion or BayesShrink.  

It is already clear that suppression of speckle noise is necessary to get reliable 
measurements. At the moment we are researching new filtering techniques in order to remove 
this speckle noise as much as possible and preserve details as well. In this article we compare 
three noise removal techniques, based on wavelet decomposition, applied to speckle images. 
In this paper Parametric multiwavelet is used, which exhibit good frequency resolution and  
compact support 
 
2. Background  

2.1 Denoising using wavelet shrinkage-Statistical modelling and estimation. 

Consider the standard univariate nonparametric regression setting 
)()()( ttStX iii  , ni ,,2,1                                    (2) 

Where stX i )(  are assumed to come from zero-mean Normal distribution,  i  are 
independent standard normal - N (0, 1) - random variables and noise level   may be 
known or unknown. The goal is to recover the underlying function S  from the noisy  

data, ),,,( 21  nXXXX   without assuming any particular parametric structure for..  

S  

 

For images, the model is  
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)()()( ,,, ttStX jijiji 
, ,,,2,1 Ii    ,,,2,1 Jj  )1,0(~, Nji                  (3) 

The three main steps of denoising using wavelet coefficient shrinkage technique are 
as follows 

1) Calculate the wavelet coefficient matrix w  by applying a wavelet transform W    
 to the data: 

),()()( WSWXWw                                  (4) 

2) modify the detail coefficients (wavelet coefficients) of w  to obtain the estimate 
ŵ  of the wavelet coefficients of S:  

    ww ˆ                                                               (5) 

3) Inverse wavelet transform for the modified detail coefficients to obtain the 
denoised coefficients 

    )ˆ(ˆ 1 wWS                                                      (6) 

The number n of the wavelet coefficients w  in Equ. (4) varies depending on the type 
of transform (decimated or undecimated) used. w  consists of both scaling coefficients 
and wavelet coefficients. In decimated wavelet transform, the number of coefficients in 
w  is same as number of data points. There will be n/2 scaling coefficients and equal 
number of wavelet coefficients in w .  

The first step in denoising is to select a wavelet for the forward and inverse  

transformation W and
1W .  

There are variety of wavelets that can be used which differs in their support, 
symmetry, and number of vanishing moments. In addition to a wavelet, we also need to 
select number of multiresolution levels and the option for handling values near the edge 
of the image. There are several boundary treatment rules including periodic, symmetric, 
reflective, constant and zero-padding. If the selections of filters are perfect then 
denoising can also be applied without problems in cardiac imaging also. In the recent 
years there has been increasing number of research activities on wavelets and 
multiwavelets for applications like denoising. This lead to the development of many 
algorithms for removal of noise from the signal.  

 
2.2 Parametric Multiwavelets 

Capacity to represent localized phenomena, represent variables and seek solutions to 
a predetermined level of resolution and use of computing power are the features in their 
favour [12-13]. The scalar wavelets have only one scaling function and N-1 wavelet 
functions. They failed to satisfy the orthogonal, symmetric, antisymmetric and 
biorthogonal properties simultaneously [14]. Since multiwavelets has more than one 
scaling functions, it is possible to use correct stencils and was able to identify the low 
and high frequency in a better way [15]. Multiwavelets with vanishing moments 
maintain convergence of order M-1 upto the boundary-a unique property not shared by 
the scalar wavelet [15]. The interpolating property of the multiwavelet basis makes the 
coefficient values same as the values of the solution, thereby reducing the 
computational overhead. The use of a set of short support filters in multiwavelet leads 
to dual benefits over scalar wavelets. The first one is that multiwavelet with a given 
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support can achieve the smoothness offered by scalar wavelets with larger support. The 
second benefit is that multiwavelet provides better compaction than the scalar wavelets 
[15]. Availability of a large number of wavelet families implies a corresponding high 
level of flexibility in the use of image compression. However the number of 
multiwavelet families available is limited putting a corresponding restriction on the 
possibilities of compression application. Parametric multiwavelets have the advantage 
that the user can optimize the multiwavelet system for any application. It is possible to 
generate scaling function coefficients by varying angular parameters. A method for the 
construction of the parametric multiwavelet [15] has been formulated. It was reported in 
[15] parametric multiwavelet based transforms exhibit good frequency resolution, 
compact support, orthogonality, arbitrary approximation order and symmetry at the 
same time.  

For α = 0, the symbol of the symmetrical cardinal B-spline of order 2 is obtained. 
The cardinal B-splines are the most regular refinable functions with respect to their 
supports. The support of 2 

is contained in [-1, 1]. Multiwavelets as an extension of 
scalar wavelets have received considerable attention recently from wavelet research 
communities. Multiwavelets can be considered as a system of wavelets with more than 
one scaling and wavelet functions.  
 
3. Proposed work  

 
3.1 Parametric multiwavelet with Sure shrink 

For the coefficients of parametric multiwavelets in equation (9) the wavelet 
transform is applied using preprocessing and post processing filter. The filter used for it 
is Hardin-Roach filter. 

The matrix coefficient
 kH

,
 kG

 are of the form  

 

 

 

                                                                                                                               (7) 

 

 

 

 

                                                                                                                               (8) 

 

The coefficients for computation of parametric multiwavelets of multiplicity r = 2 
and approximation order 1   is given here where   is the approximation order and  
is the parameter.  

Computation of 
( )A z   involves three steps [15]: 
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1. Defining general symbol entries. 

2. Eigen value condition. 

3. Factorization condition. 

The symbol A as the scaling coefficients, for k = 2can be written as 

                    (9) 

  

            (9) 

 

Once the filter coefficients are found out for a particular value of α , the wk – detail 
coefficients are obtained. Using these values denoising process is started. After 
performing denoising using the same set of filter coefficients the inverse multiwavelt 
transform is applied to get back the pure signal. 

       Donoho and Johnstone proposed a robust estimate of the noise level σ given by 

                σ =median {(wk: k=1, 2,....,n/2)}/0.6745                                               (10)  

Here wks are detail coefficients at the finest level. Let w denote a single detail 
coefficient and w1 denote its shrink version. Let λ be the threshold and Dλ (.) denote 
shrinkage function which determines how threshold is applied to the data and σ1 be the 
estimate of the standard deviation of the noise, then 

W1=σ1.Dλ(w/σ1)                                                                                                    (11) 

 By dividing w with σ1 the w coefficients are standardized to get ws and the threshold 
operator is applied. After thresholding, the resultant coefficients are multiplied with σ1 
to obtain w1. If σ1 is build into the threshold model or if the data is normalized with 
respect to noise standard deviation, equation for estimated value of w is: 

 W1=Dλ(w)                                                                                                            (12) 

The first part of the proposed work is to find out the threshold value using SURE 
(Stein Unbiased Risk Estimate). The main advantage of selecting SURE shrinkage rule 
is that the generalization of images can be achieved in either level- or subband-
dependent manner. In the latter case, the threshold on subband S is 

λs =arg(min λ>=0[SUREs(λ,ws)                            (13) 

 Where ws denotes the detail coefficients from the subband S and SURE (λ,ws) 
denote the corresponding Stein’s unbiased estimate of the risk corresponding to a 
specific shrinkage function. 

 

SURES[λ,ws]=Ns + ∑ [min (wk),λ]2 – 2[wk]                (14) 

It was shown by Donoho and Johnstone that, in case where the wavelet coefficients 
decomposition is sparse, a hybrid method combining the universal and SURE thresholds 
is preferable over SURE. This hybrid method, when combined with soft shrinkage 
function is referred to as Sure Shrink. 
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The shrinkage function determines how the thresholds are applied to the data. The 
mathematical expression for soft threshold is  

Dλ(w) =sgn(w) max(0; w-λ)                  (15) 

//Algorithm to perform denoising using Sureshrink 

//Inputs 

   Wk: detail coefficients 

    Ns: Number of coefficients 

//Outputs 

   λ:threshold 

//Computations 

   Load a 2-D noisy image 

{ 

  Fix the noise standard deviation σ 

  Perform Wavelet transform using the coefficients from equation (9) 

 Calculate the value of λ from the equations (13) and (14) 

  For the value of λ find Dλ(.) using the equation (15) 

 Perform inverse wavelet transform for the same set of coefficients in equation (9) 

 Find out the difference between the original and reconstructed image. 

  Find Signal to noise ratio 

} 

Repeat for different images and different values of σ Algorithm can be repeated for 
different coefficient set of parametric multiwavelet by changing the value of α in 
equation (9). 

 
4. Results and discussion   

The experiments are conducted on several natural gray scale test images like Lena 
and Barbara 256 × 256 at different noise levels σ=10, 20. The wavelet transform 
employs parametric multiwavelets compactly supported wavelet with eight vanishing 
moments [14] at four scales of decomposition. To assess the performance of TopShrink, 
it is compared with SureShrink, BayesShrink. To benchmark against the best possible 
performance of a threshold estimate, the comparison include BayesShrink, the best soft 
thresholding estimate obtainable assuming the original image known. The SNR values 
from various methods are compared in Table I and the data are collected from an 
average of five runs. Since the main comparison is against SureShrink and 
BayesShrink, the better one among these is highlighted in bold font for each test set. 
SureShrink outperforms Topshrink and BayesShrink most of the time in terms of SNR 
as well as in terms of visual quality. Moreover SureShrink is 4% better than 
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BayesShrink.  The choice of soft thresholding over hard thresholding is justified from 
the results of best possible performance of a hard threshold estimator. 

Comparisons are also made with the best possible linear filtering technique i.e. 
Hardin-roach filter. The results in the table I show that SNR are considerably worse 
than the nonlinear thresholding methods, especially when σ is large.  

The image quality is also not as good as those of the thresholding methods. 

Figure. 1. shows the image denoised with proposed multiwavelet, Sureshrink. It is 
observed that the proposed method improves the image quality. It can be seen that there 
is 10% improvement over other multiwavelets and around 5% over Bayes shrink in 
preserving image structure. Based on SNR also it can be seen that the proposed method 
performs better than the other two. Fig. 4 shows comparative analysis of GHM 
multiwavelet, bayesshrink and proposed method. 

 

Table I. SNR results for various test images and σ values 

 

It is clear that the performance of the methods depends on image type and noise 
levels. But in both cases, whether GHM multiwavelet or bayesshrink gives worst 
results, the performance of the proposed method seems to be much better than the other 
two. It can be seen that the proposed method preserves image structures much better 
than GHM multiwavelet and bayesshrink. Also the number of iterations required for the 
proposed method to produce the better image is much less than that of GHM 
multiwavelet. The experiment is repeated for various types of images with varying 
noise levels and seems that the method proposed is giving better results than GHM 
multiwavelet and Bayes shrink. It is clear that the performance of the methods depends 
on image type and noise levels. But in both cases, whether GHM multiwavelet or 
bayesshrink gives worst results, the performance of the proposed method seems to be 
much better than the other two. It can be seen that the proposed method preserves image 
structures much better than GHM multiwavelet and bayesshrink. Also the number of 
iterations required for the proposed method to produce the better image is much less 
than that of GHM multiwavelet. The experiment is repeated for various types of images 
with varying noise levels and seems that the method proposed is giving better results 
than GHM multiwavelet and Bayes shrink. 

 

 Topshrink (db) Bayesshrink (db) Sureshrink (db) 

Barbera 

σ=10 45.34 45.87 46.07 

σ=20 40.57 40.92 41.21 

Lena 

σ=10 46.34 46.99 47.23 

σ=20 43.68 43.98 44.41 
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                              (c)                                                                          (d) 

Figure. 1. (a) Original Barbera image (b) Noisy Barbera of σ=10. 
Reconstructed images (c) DGHM (45.83dB), (d) Proposed filter (46.07 dB). 

 
5. Conclusion   

In this paper, a parametric multiwavlet with sureshrink threshold is proposed to 
address the issue of image recovery from its noisy counterpart. It is based on the 
generalized Guassian distribution modeling of subband coefficients. The image 
denoising algorithm uses soft thresholding to provide smoothness and better edge 
preservation at the same time. Experiments are conducted to assess the performance of 
SureShrink in comparison with the Topshrink and Bayeshrink. The results show that 
SureShrink removes noise significantly and remains within 4% of Topshrink and 
outperforms BayesShrink. It is further suggested that the proposed threshold may be 
extended to the compression framework, which may further improve the denoising 
performance. Due to the inherent characteristic of the wavelet transform, we used 
parametric multiwavelets for restoration, making the proposed scheme computationally 
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efficient. The comparative study of peak signal-to noise ratio with varying levels of 
noise intensities shows the improved reconstruction quality. Another advantage of the 
proposed scheme is that denoising in the image is found to improve the SNR of the 
whole image. 
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